FISEVIER

Contents lists available at ScienceDirect

Biological Conservation

journal homepage: www.elsevier.com/locate/bioc

Altered activity patterns and reduced abundance of native mammals in sites with feral dogs in the high Andes

Galo Zapata-Ríos ¹, Lyn C. Branch

University of Florida, Department of Wildlife Ecology and Conservation, 110 Newins-Ziegler Hall, Gainesville, FL 32611-0430, USA

ARTICLE INFO

Article history:
Received 27 July 2015
Received in revised form 12 October 2015
Accepted 24 October 2015
Available online xxxx

Keywords: Invasive species, Large mammal, Relative abundance, Activity pattern, Habitat use, Tropical Andes

ABSTRACT

Negative impacts of some introduced carnivores like feral cats are well documented, widespread, and significant. Comparatively, the effects of feral dogs (individuals that are not associated with people or human settlements) on native wildlife are poorly known, even though feral dogs occur worldwide. We assessed the density of feral dogs and compared relative abundance, activity patterns and habitat use of 10 species of mammals in areas with and without feral dogs in Cayambe-Coca National Park in the northern Ecuadorian Andes using line transect surveys, camera traps, and track and sign surveys. In areas where feral dogs were present, four native mammals were absent: mountain coati (Nasuella olivacea), mountain paca (Cuniculus taczanowskii), long-tailed weasel (Mustela frenata), and northern pudu (Pudu mephistophiles). Relative abundances of six species were lower compared to areas without feral dogs: puma (Puma concolor), Andean fox (Lycalopex culpaeus), Andean bear (Tremarctos ornatus), striped hog-nosed skunk (Conepatus semistriatus), mountain tapir (Tapirus pinchaque), and little red brocket deer (Mazama rufina). Three species significantly altered activity patterns where feral dogs were present (Andean bear, mountain tapir, and little red brocket deer). In contrast, none of the native mammal species exhibited shifts in habitat use in areas with feral dogs. Dogs used all habitat types according to availability. Our results point to feral dogs as a significant problem for the native mammal community of this Andean region, and highlight the need to consider feral dogs as a potential threat to wildlife in other regions where anthropogenic effects appear to be low but feral dogs are present, particularly natural areas that contain endangered and endemic species.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Domestic dogs (*Canis lupus familiaris*) and cats (*Felis silvestris catus*) are the most widespread introduced carnivore species. Although the vast majority of cats and dogs are owned as pets, a large percentage of them range freely and many have become feral (i.e., individuals completely wild and independent of human sources of food; Campos et al., 2007; Hughes and Macdonald, 2013; Vanak et al., 2014). Negative impacts of feral cats, including their role in species extirpations and extinctions, are well documented (Nogales et al., 2004; Medina et al., 2011). Comparatively, little is known about the global distribution, population size, and ecological impacts of feral dogs. Most information about impacts of dogs comes from populations of free-ranging, owned dogs restricted to urban and periurban areas (e.g., Macdonald and Thom, 2001; Silva-Rodríguez et al., 2009; Young et al., 2011). However, feral dog populations have been reported worldwide, and in many localities where native predators have been extirpated or are absent, they

function as apex predators (Allen et al., 2013; Vanak and Gompper, 2009; Vanak et al., 2014).

Large predators have an important ecological role in structuring food webs and maintaining ecological processes that impact entire ecosystems (Estes et al., 2011; Terborgh et al., 2001). This structuring role occurs through lethal (e.g., predation) and non-lethal (e.g., fear) interactions (Lima, 1998; Luttbeg and Kerby, 2005; Paine, 1966). Large predators alter density of prey by removing individuals, and the presence of predators also results in changes in behavior to reduce risk. Fear induced by predators may reduce fitness of prey by altering their activity patterns and habitat use, increasing vigilance time, reducing foraging time, and lowering mating success (Creel and Christianson, 2008; Preisser et al., 2005). Although lethal and non-lethal impacts have been documented for numerous carnivores, until recently studies of introduced predators focused on lethal effects (Gerber et al., 2012; Hughes and Macdonald, 2013; Silva-Rodríguez et al., 2010; Vanak et al., 2014).

Although the Ecuadorian Andes have long been occupied by people and threats to biodiversity such as habitat loss and fragmentation are widely recognized and well documented, threats posed by introduction of exotic animal species have been overlooked until recently (Hofstede et al., 2002; Sarmiento, 2002; Olmedo and Montoya,

E-mail addresses: gzapata@wcs.org (G. Zapata-Ríos), BranchL@ufl.edu (L.C. Branch).

Present address: Wildlife Conservation Society Ecuador, Av. Granados N40-53 y París, Quito, Ecuador.

2011). Free-ranging and feral dogs have become a problem for conservation, animal welfare, and public health in vast areas of the Ecuadorian highlands, as a result of human population growth, poor waste management practices, absence of responsible dog ownership, and low awareness of zoonotic disease issues (Olmedo and Montoya, 2011). The current geographical distribution of feral dogs in the Ecuadorian Andes is unknown; but, free-ranging and feral dogs are believed to be widely distributed along the Ecuadorian Andes, including areas that otherwise would be considered pristine. Feral dogs are the largest mammalian predator in several protected areas (Olmedo and Montoya, 2011). However, feral dogs differ from most native predators because they usually occur in relatively high population densities and form packs that can kill large prey (Vanak and Gompper, 2009; Vanak et al., 2014).

Our objective was to identify potential effects of feral dogs on the abundance and behavior of native mammals of the high Andes in northern Ecuador. By focusing on feral dogs, rather than the more well studied free-ranging dogs, we address a fundamental gap in understanding interactions between this pervasive introduced predator and wildlife. We carried out our work in Cayambe-Coca National Park, the second largest protected area in the Ecuadorian Andes, because this area is relatively free of other anthropogenic disturbance and has areas where dogs are present and absent that are ecologically similar in other respects. Of the 16 large mammal species (>1 kg) recorded in the study area, eight are endemic to the Tropical Andes (Tirira, 2007). Seven species are categorized as endangered, vulnerable, or near threatened, and two species are data deficient in the IUCN Red List of Threatened Species (IUCN, 2015). We predicted that abundance of native mammals in areas with feral dogs would be lower than in areas without feral dogs, and that native mammals would show differences in their diel activity patterns and habitat use between areas with and without feral dogs to avoid encountering them. An understanding of the interactions between feral dogs and the unique fauna of the Tropical Andes is crucial for design of conservation and management interventions for this region and will highlight potential challenges for conservation of biodiversity in other areas where feral dog populations have been established.

2. Methods

2.1. Study area

We conducted fieldwork in páramo highlands of Cayambe-Coca National Park(~4000 km²), which straddles the north-south oriented eastern cordillera of the northern Ecuadorian Andes. Páramo is a mosaic comprising high altitudinal grasslands (grass páramo) interspersed with patches of shrub páramo, cushion páramo, and Andean forests (Baquero et al., 2004). The ensemble of large mammal species (>1 kg) in páramo of Cayambe-Coca National Park is representative of the high altitude fauna of the Tropical Andes (Table 1), which is probably the least known group of large mammals in the Neotropics (Tirira, 2007). Climate is highly a seasonal (average annual precipitation, approximately 2500 mm with more than 250 rainy days; average monthly temperatures, 4 to 10 °C; Josse et al., 2011).

Our study area encompassed approximately 25×75 km in the core of the park (extending from 00°12′N to 00°22′S and 77°31′W to 78°11′ W) with altitude ranging from 3400 to 3900 m. The study area was located on a plateau covered entirely by native páramo vegetation and divided by a deep gorge (Huataringo River). Soils, topography, and vegetation are similar north and south of the river (Baguero et al., 2004; Fundación Antisana (FUNAN), 1998), and hunting is prohibited throughout the park. Law enforcement in the area is high because the main water supply for Quito, the capital city of Ecuador, comes from glacial lakes in the park, Park rangers of the Ecuadorian Ministry of the Environment and staff of the water utility company control human access to the area. Dogs are known to occur only south of the river providing the opportunity for a comparative design to examine relative abundance and behavior of native mammals in areas with and without dogs but similar in other respects. We consider these dogs to be feral because: 1) the closest human settlement to the study area is more than 50 km away, 2) dogs showed avoidance and aggression towards people, and 3) dogs were in good body condition compared to free-ranging dogs associated with human settlements. To verify that illegal hunting did not occur in the study area, we searched for signs of hunting (e.g., remains of ammunition, traps, etc.) while walking transects to collect data on dog abundance and setting camera traps for mammals, and

Table 1Mammals with body mass > 1 kg known to occur in Cayambe-Coca National Park of Ecuador (Tirira, 2007), species endemic to the Tropical Andes^a, status and trend in IUCN Red List of Threatened Species^b and Ecuador's Red List^c, and survey method^d used to register the species in this study.

		IUCN status and trend	
Species	Endemic	(status in Ecuador)	Survey method
Andean porcupine (Coendou quichua)	Е	DD, decreasing (VU)	Nd
Andean white-eared opossum (Didelphis pernigra)	E	LC, stable (LC)	С
Mountain paca (Cuniculus taczanowskii)	E	NT, decreasing (DD)	С
Tapití (Sylvilagus brasiliensis)	-	LC, unknown (LC)	C, S
Puma (Puma concolor)	-	LC, decreasing (VU)	C, T*
Andean fox (Lycalopex culpaeus)	-	LC, stable (VU)	C, T, S*
Andean bear (Tremarctos ornatus)	-	VU, decreasing (EN)	C*, S
Pampas cat (Leopardus colocolo) ^e	-	NT, decreasing (VU)	Nd
Colombian weasel (Mustela felipei)	E	VU, decreasing (DD)	Nd
Long-tailed weasel (Mustela frenata)	-	LC, stable (LC)	С
Striped hog-nosed skunk (Conepatus semistriatus)	-	LC, unknown (LC)	С
Mountain coati (Nasuella olivacea)	E	DD, unknown (VU)	C, D*
Mountain tapir (Tapirus pinchaque)	E	EN, decreasing (CR)	C, T*, S
Little red brocket deer (Mazama rufina)	E	VU, decreasing (VU)	C, T*
White-tailed deer (Odocoileus virginianus)	-	LC, stable (LC)	C*, T
Northern pudu (Pudu mephistophiles)	Е	VU, decreasing (VU)	С

^a Endemic to the tropical Andes: E.

b Status in the IUCN (2015) Red List: Critically endangered – CR, endangered – EN, vulnerable – VU, near threatened – NT, data deficient – DD, least concern – LC.

^c Status for Ecuador taken from Tirira (2011).

d Survey method: Camera traps — C, tracks — T, scats — S, digging — D, not detected in this study — Nd. If a species was detected by multiple methods, the method that produced the most data (*) was used to estimate relative abundance.

e This species has been divided into three species by some authors, but more recent genetic analyses suggest that division at the species level is not warranted (IUCN, 2015). Under the three-species taxonomy, the species in Ecuador corresponds to Leopardus paieros (Tirira, 2007).

we looked for evidence of hunters in photographs from camera traps. We detected no evidence of hunting in the study area.

2.2. Survey methods for dogs and native mammals

From October 2010 to July 2011, we assessed abundance, habitat use, and activity patterns of native mammals and feral dogs in three randomly located sites in the area with dogs and in three sites in the area without dogs. Sites (each 100 km²) were separated by a minimum of 10 km, and thus were spatially independent except for species with the largest home ranges (puma and Andean bear). Habitat was distributed similarly among the four types in sites with and without dogs [mean percent of site \pm SD, grassland: 54.5 \pm 7.5 (dog), 55.6 \pm 5.1 (no dog); shrub páramo: 18.5 \pm 4.4 (dog), 15.5 ± 5.9 (no dog); cushion páramo: 4.3 ± 2.2 (dog); 4.9 ± 2.1 (no dog); Andean forest: 22.7 ± 6.6 (dog), 24.0 ± 2.7 (no dog); data from Ministerio del Ambiente, 2012]. Also, habitat at sample locations followed the same pattern. The proportion of cameras and transects in each habitat type was similar for areas with and without dogs (see below and Appendix A1). To verify our assumption about the presence or absence of dogs in the sites and evaluate dog density, we established six four-km transects in each of the six survey sites in grass páramo. Transects were surveyed between 06:00-10:00 h at weekly intervals for four weeks. We walked transects slowly (~1 km/h), and recorded dogs sighted, sighting (radial) distance, sighting angle, and location along the transect. When dogs were observed in groups, estimation of distance to the geometric center was difficult, so perpendicular distance to all individuals detected was recorded, and existence of the group was ignored (Buckland et al., 2010; Thomas et al., 2010).

All native mammal species > 1 kg body mass and dogs were surveyed with camera traps and transect surveys for tracks and sign. Each of the six survey sites was subdivided in a grid with 25 cells, each 4 km². Three camera traps (Bushnell Trail Sentry STD) were placed randomly in each cell at least 1 km apart for eight consecutive days, for a total of 600 trap-nights per site. Cameras were not on trails or roads. We conducted track and sign surveys at each site along five parallel transects (12 km each) that crossed all 25 4-km² cells. Because vegetation was open, we were able to walk transects without using pre-existing trails or cutting trails for transects. Tracks and other signs were counted within a 2-m strip centered on the transect. Characteristics of the soil (Cryandepts from volcanic ash; Fundación Antisana (FUNAN), 1998) were similar in the six survey sites and on all transects. Thus, we assumed that differences in occurrence of tracks depended only on mammal abundance. Each transect was surveyed four times during a sixweek period for tracks and signs (scats and diggings) of all species (Table 1). Each time we found a track or sign, we recorded the species and place along the transect where the track or sign was found. Independence of tracks was established based on the following (Carrillo et al., 2000): 1) tracks of an animal crossing the transect were considered as one sighting, 2) tracks of an animal walking parallel to the transect were considered as one sighting, and 3) groups of tracks of gregarious species (e.g., mountain coatis) were considered as one sighting. Scats also were identified easily for Andean foxes, mountain tapir, and Andean bears, and we considered all sightings of scats as independent observations. Mountain coatis were detected by their characteristic digging of numerous small holes (e.g., over an area of 3–5 m²). Other species such as skunks that dig holes typically make only one or two small holes at a location. Each set of coati diggings was considered an independent observation of coatis because diggings were far apart (mean distance between diggings, 2.3 + 0.39 km SD). Coatis are social and, thus, an observation represented a group rather than an individual.

2.3. Data analysis

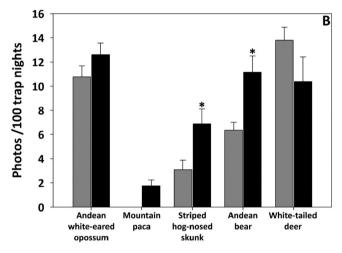
Population densities of feral dogs were estimated independently for the six survey sites using transect data and DISTANCE 6.0 (Buckland et al., 2001; Thomas et al., 2010). The detection function was derived from data from all sites to improve estimation. Population densities were estimated by applying uniform and half-normal key functions, and cosine or simple polynomial adjustment terms as needed (Buckland et al., 2001; Thomas et al., 2010).

To evaluate abundance of native mammals in areas with and without dogs, we estimated a relative abundance index for each species at each sampling site based on photographic rates in camera traps (number of independent pictures/100 trap-nights; Kelly, 2008; O'Brien et al., 2003) and, for track and sign data, we used an index based on encounter rates along transects (number of independent tracks or signs recorded for each species/10 km of sampling effort; Carrillo et al., 2000; Reyna-Hurtado and Tanner, 2005). Relative abundance indices were used only for intraspecific comparisons because detectability with camera traps and animal signs varies among species. We compared relative abundance indices between areas with and without dogs using a one-factor analysis of variance with the three sites as replicates. Prior to ANOVA, data were tested for normality and homogeneity of variances with Shapiro–Wilk and Cochran's C tests respectively (Doncaster and Davey, 2007).

We used nonparametric circular Mardia–Watson–Wheeler tests to evaluate whether diel activity patterns of native mammals differed between areas with and without feral dogs (Di Bitetti et al., 2009; Gerber et al., 2012). This analysis was restricted to species with ≥30 independent photographic events in areas with and without dogs. We considered the following photographic events as independent (O'Brien et al., 2003): 1) consecutive photos of individuals of the same species taken at least 30 min apart, 2) nonconsecutive photos of individuals of the same species, and 3) consecutive photos of different individuals of the same species where identification of individuals was possible. Data were pooled by hourly intervals across survey sites with dogs and across sites without dogs. Analyses were performed with Oriana 4.0 (Kovach Computing Services, 2012).

If dogs affect habitat use of native mammals, we expected to see shifts in habitat use between areas with and without dogs, including reductions in the use of habitats most often used by dogs. For each species, data from camera traps (number of independent photographs) were stratified by the four vegetation types (grass páramo, shrub páramo, cushion páramo, and Andean forest) for areas with and without dogs and analyzed with χ^2 goodness-of-fit tests to evaluate the hypothesis of no difference between proportions of habitat available and used. Habitat use by feral dogs also was evaluated. Also, 90% adjusted Wald confidence intervals (\hat{w}) for expected proportions of use were calculated for each habitat type (Agresti, 2007). Where the observed proportion (p_{obs}) of use of any given habitat was greater than the expected interval ($p_{\text{exp}} \pm \hat{w}$), this habitat was identified as preferred habitat.

3. Results


3.1. Dog density

We recorded 156 observations of feral dogs, equivalent to 0.27 sightings/km, in 576 km of transects in the three sites that were expected to have dogs. In the other sites, we encountered dogs six times with a sampling effort of 587 km, a level of presence considered negligible for our study purposes. Average pack size was 9.8 \pm 3.3 individuals (mean \pm 95% CI). Dog density in the three dog sites was estimated as 0.89 individuals/km² (95% CI = 0.76–1.07), 1.16 individuals/km² (1.11–1.32 CI), and 1.09 individuals/km² (0.99–1.24 CI).

3.2. Abundance of native mammals

Thirteen species of native mammals were recorded in the study area using camera traps, track and sign surveys, or both (Table 1). All species were found at the sites without dogs, but four of the smaller species were absent from areas with dogs. Of these four species, mountain

Fig. 1. Relative abundance (grand mean for three sites + 95% CI) using A) number of tracks or signs on transects and B) number of photos/100 trap nights of 10 native species in areas with and without feral dogs in Cayambe-Coca National Park, Ecuadorian Andes. Asterisks indicate significant differences in abundance between areas with and without feral dogs (p < 0.05).

paca and mountain coati were relatively abundant in areas without dogs (Fig. 1). Long-tailed weasel and northern pudu were recorded in only a few occasions with camera traps (n = 6 and n = 3, respectively). Tapiti (*Sylvilagus brasiliensis*) was recorded infrequently with cameras. Although fecal pellets of this rabbit were encountered in dog and no dog sites, signs of individual rabbits could not be distinguished because pellets were broadcasted widely. Therefore, we did not include this species in our analysis. The remaining eight species had sufficient data to compare abundance in areas with and without dogs (minimum number of photographs for a species = 54 per area; minimum number of tracks or signs = 72). The data source (tracks/signs or photographs) that provided the most data for each species was used in the analysis (Fig. 1). For six species, relative abundance was significantly higher in areas without dogs: puma ($F_{1,4} = 28.05$, p = 0.006), Andean fox ($F_{1,4} = 54.19$, p = 0.006) 0.002), Andean bear ($F_{1,4} = 26.38$, p = 0.007), striped hog-nosed skunk ($F_{1,4} = 28.44$, p = 0.006), mountain tapir ($F_{1,4} = 24.75$, p = 0.006) 0.008), and little red brocket deer ($F_{1.4} = 42.27$, p = 0.003). No significant differences in relative abundance occurred between areas with and without dogs for the Andean white-eared opossum (Didelphis pernigra, $F_{1,4} = 5.28$, p = 0.08) and white-tailed deer (Odocoileus virginianus, $F_{1,4} = 5.97$, p = 0.07; Fig. 1). Data for all species met the required assumptions for analysis of variance (Shapiro-Wilk test for all species: $W \ge 0.95$, p > 0.05; Cochran's C test for all species: $C \ge 0.57$, p > 0.05).

3.3. Activity patterns

We obtained more than 30 independent photographic events in dog and no dog areas for seven species of native mammals (Fig. 2). Activity patterns of feral dogs were crepuscular with activity concentrated between 05:00-09:00 and 16:00-20:00 h. Three species of mammals showed significant differences in activity patterns between areas with and without dogs (Fig. 2): Andean bear ($\chi^2 = 6.34$, d.f. = 2, p < 0.05), mountain tapir ($\chi^2 = 19.64$, d.f. = 2, p < 0.001), and little red brocket deer ($\chi^2 = 14.94$, d.f. = 2, p < 0.001). The Andean bear and little red brocket deer had a bimodal distribution of activity in the absence of dogs, and became more diurnal when dogs were present. The mountain tapir exhibited activity throughout the day and night in areas with no dogs, and became mostly nocturnal in areas with dogs. The Andean fox tended to be more nocturnal in areas with dogs, but this difference was not statistically significant ($\chi^2=4.08$, d.f. = 2, p=0.12). Three species did not change their activity patterns in areas where dogs were present: Andean white-eared opossum ($\chi^2 = 2.76$, d.f. = 2, p =0.26), striped hog-nosed skunk ($\chi^2 = 2.39$, d.f. = 2, p = 0.28), and white-tailed deer ($\chi^2 = 4.59$, d.f. = 2, p = 0.11; Fig. 2).

3.4. Habitat use

Feral dogs used habitat according to availability ($\chi^2=6.16$, d.f. = 3, p>0.1), and none of the mammal species included in the analysis shifted their habitat use patterns with the presence of dogs. Four species used habitat according to availability in areas with and without dogs: Andean white-eared opossum, striped hog-nosed skunk, mountain tapir, and little red brocket deer (for all species, dogs: $\chi^2 \le 7.01$, d.f. = 3, p>0.1; no dogs: $\chi^2 \le 6.85$, d.f. = 3, p>0.1). Three species (Andean fox, Andean bear, and white-tailed deer) preferred grass páramo over other habitat types in areas with and without dogs (for all species, dogs: $\chi^2 \ge 29.8$, d.f. = 3, p<0.001; no dogs: $\chi^2 \ge 29.8$, d.f. = 3, p<0.001; no dogs: $\chi^2 \ge 23.7$, d.f. = 3, p<0.001); Andean fox (dogs: $\chi^2 \ge 29.8$, d.f. = 3, $\chi^2 \ge$

4. Discussion

The threat that feral dogs pose to an entire community of large mammals has not been reported previously, though such impacts potentially are widespread given the global distribution of feral dogs. In our study area, relative abundance and behavior of herbivores, omnivores, and carnivores differ markedly between areas with and without dogs. Because our study was observational rather than experimental, the patterns we observed could be related to environmental factors other than presence of dogs. However, this appears unlikely. First, biophysical characteristics (e.g., vegetation, soils, topography, and rainfall) and protection from human disturbance, including hunting, are similar between areas with and without dogs in our study area (Baquero et al., 2004; Ministerio del Ambiente, 2010). In addition, relative abundance and behavioral data were largely congruent for species that we analyzed. Species that shifted activity patterns and reduced overlap with activity patterns of dogs also had reduced abundance where dogs occurred. Density estimates of feral dogs in the study area (~1 individual/km²) are lower than estimates for free-ranging dogs from other localities worldwide (e.g., 2.5-76.8 individuals/km²; Campos et al., 2007; Lembo et al., 2008), but because feral dogs form packs, their impacts may be particularly large. The role of feral dogs as predators in natural ecosystems is unlikely to be equivalent to those of native predators in systems where native predators are mainly solitary and occur at low population densities, such as the high Andes.

Two species of conservation concern, the mountain paca and mountain coati, were not detected in areas with feral dogs. We cannot confirm

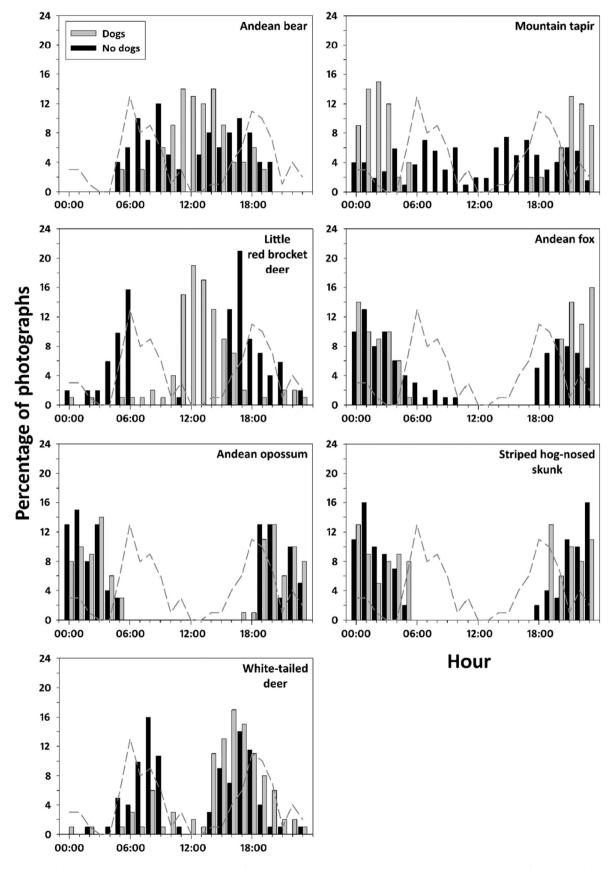


Fig. 2. Activity patterns of seven native mammals in areas with and without feral dogs based on photographs taken during hourly intervals (percentage of total number of photographs) in Cayambe-Coca National Park, Ecuadorian Andes. The dashed line shows the activity pattern of feral dogs.

that these species were extirpated by dogs, but given that the study sites were in a large protected area with little other disturbance, we have no other plausible explanation. In addition, significantly lower relative abundance of six other species (puma, Andean fox, Andean bear, striped hog-nosed skunk, mountain tapir, and little red brocket deer) in areas with feral dogs suggests that robust populations of many native species may persist in the long-term only through control and eradication of this invasive species. In contrast, relative abundances of Andean white-eared opossums and whitetailed deer appear not to be affected by presence of dogs. The mostly arboreal and highly nocturnal behaviors of the opossum (Gardner, 2007) may represent effective means for reducing interference and predation from dogs. Several studies carried out in North America concluded that feral dogs do not prey effectively on adult whitetailed deer (e.g., Causey and Cude, 1980; Sweeney et al., 1971), but impacts of dogs on fawns of white-tailed deer are unknown. In contrast, lethal attacks of dogs on other smaller species of deer have been documented, including southern pudu (Pudu pudu, Silva-Rodríguez and Sieving, 2012) and brown brocket deer (Mazama gouazoubira, Galetti and Sazima, 2006).

With the exception of the Andean bear and mountain tapir, prior to this study little was known about diel activity patterns of mammals from the Tropical Andes (García-Rangel, 2012; Lizcano and Cavelier, 2000). For at least three native species (Andean bear, mountain tapir, and little red brocket deer), our results support temporal partitioning as a mechanism for decreasing encounters with feral dogs. Also, the Andean fox exhibited little activity during the period when dogs were active in early morning in areas with and without dogs, and nocturnal activity increased slightly in areas with dogs. Our results are congruent with data obtained in Madagascar, where the ring-tailed mongoose (Galidia elegans) changed activity patterns to avoid introduced species like free-ranging dogs and small Indian civets (Viverricula indica; Gerber et al., 2012). Such disruption of activity patterns can have significant adverse physiological and behavioral effects (Froy, 2010; Karatsoreos et al., 2011; Reppert and Weaver, 2002). Andean opossum, striped hog-nosed skunk, and white-tailed deer did not shift activity patterns where dogs occurred. This might be explained by physiological constraints that preclude shifts in activity patterns, prey naiveté, or existence of effective mechanisms of defense against feral dogs, as suggested by the lack of difference in relative abundance of the Andean white-eared opossum and white-tailed deer between areas with and without dogs (Ashby, 1972; Kavanau and Ramos, 1975; Sih et al., 2010).

In addition to temporal shifts in activity patterns, presence of dogs also can lead to changes in habitat use of native species (Silva-Rodríguez et al., 2010; Vanak and Gompper, 2009). However, species in our study did not exhibit different patterns of habitat use in areas with and without dogs. Feral dogs used habitat types according to availability, probably making active avoidance of dogs through spatial shifts in habitat an ineffective strategy. This finding contrasts with other studies in Europe and Australia that have found that native species (e.g., wolves, *Canis lupus*; foxes, *Vulpes vulpes*; bandicoots, *Perameles nasuta*) alter habitat use to avoid competition and predation by dogs (Boitani et al., 1995; Carthey and Banks, 2012; Krauze-Gryz et al., 2012; Mitchell and Banks, 2005).

Given the breadth of species in our study area that exhibit changes in abundance and activity where dogs occur, several mechanisms are likely at play (Hughes and Macdonald, 2013; Vanak et al., 2014). Shifts in activity patterns may have fitness consequences (e.g., linked to energetics of foraging) that impact abundance (Creel and Christianson, 2008; Lima, 1998; Preisser et al., 2005). Also predation by dogs likely is an important source of mortality as dogs easily kill small prey such as mountain pacas, and packs of dogs can take offspring of large prey (e.g., tapirs) or even adults. Feral dogs in our study area also may affect native carnivores through depletion of their prey. Exploitative competition between dogs and native carnivores generally has not been considered important because free-ranging owned dogs, the subject of most studies, are fed by

owners or scavenge on human waste as their primary source of food (Butler and du Toit, 2002; Campos et al., 2007). In our study area, human sources of food are not available and feral dogs rely on native prey. This mechanism may be relatively more important than previously recognized for areas with feral dogs and low human population and, thus, deserves further attention.

Interference competition, where direct aggression by dogs impacts native carnivores, has been reported as a serious threat to wildlife in numerous parts of the world (Lacerda et al., 2009; Silva-Rodríguez et al., 2010; Vanak and Gompper, 2009) and likely is important in the Tropical Andes. During the course of our fieldwork, dogs were observed chasing native species (e.g., Andean foxes), and on several occasions killing small carnivores (e.g., striped hog-nosed skunks and mountain coatis) without predating on them. In all cases, dogs had the numerical advantage. This type of intraguild predation without consumption of subordinate species is common in carnivores (Donadio and Buskirk, 2006; Palomares and Caro, 1999). One additional mechanism that potentially could cause decline of native species in our study area is disease transmission. Spillover of pathogens resulting from close contact between dogs and native wildlife species is well documented (Murray et al., 1999; Smith et al., 2006). Diseases such as canine distemper and rabies, which have high mortality rates in domestic dogs and affect most wild carnivores, are common throughout the Andes (Ruiz and Chávez, 2010; Young, 1997).

Feral dogs are a significant problem in our study area not only because both native predators and prey may be affected by dogs, but also because many native mammal species are endemic to the Tropical Andes and already considered vulnerable to extinction. Currently, dogs are included as a threat in the assessment for the IUCN Red List of Threatened Species (IUCN, 2015) for only four of the 13 species recorded in the study area (Andean fox, little red brocket deer, northern pudu, and white-tailed deer). Impacts of feral dogs on native species are poorly understood and likely hugely underestimated for the mammal community of the Tropical Andes and many other parts of the world. Moreover, because dogs are generalist species, their impacts may extend to other taxa such as ground-nesting birds and result in a broad range of secondary impacts that are undocumented (Aliaga-Rossel et al., 2012; Rosselli and Stiles, 2012). Because of our findings, the Ministry of the Environment of Ecuador and other organizations are taking a very aggressive approach to managing and controlling feral dogs and their impacts in several protected areas of the Ecuadorian Andes. Actions include feral dog elimination, domestic dog vaccination and sterilization programs in buffer areas, as well as education and communication campaigns. Given the precarious state of mammals in the Tropical Andes and the potential for dogs to affect a large number of native species, similar strategies for reducing problems with dogs likely are needed urgently in other areas of the Andes as well as elsewhere feral dogs and wildlife interact.

Role of funding source

Funding for fieldwork was provided by the Compton Foundation through the Program for Tropical Studies and Conservation, University of Florida; Proyecto Páramo Andino, CONDESAN; and Tropical Conservation and Development Program, University of Florida. G.Z.R. was funded by the Amazon Conservation Leadership Initiative, University of Florida; Amazon–Andes Conservation Program, Wildlife Conservation Society; and SENESCYT–Ecuador. The funding sources had no involvement in the research other than providing financial support.

Acknowledgments

We thank Ministry of the Environment of Ecuador for permission to undertake this study (No. 20-2009-IC-FAU-DPAP/MA), and park rangers for their invaluable support during fieldwork. R. Fletcher, K. Sieving, M.

Sunquist, and K. Kainer provided helpful comments on earlier manuscript drafts. The research protocol was approved by the Non-Regulatory Animal Research System of the Institute of Food and Agricultural Sciences, University of Florida (IFAS ARC#015-08WEC).

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.biocon.2015.10.016.

References

- Agresti, A., 2007. An Introduction to Categorical Data Analysis. John Wiley & Sons, Hoboken, New Jersey, USA.
- Aliaga-Rossel, E., Ríos-Uzeda, B., Ticona, H., 2012. Amenazas de perros domésticos en la conservación del cóndor, el zorro y el puma en las tierras altas de Bolivia. Rev. Lat. Am. Conserv. 2, 78–81.
- Allen, B.L., Fleming, P.J.S., Allen, L.R., Engeman, R.M., Ballard, G., Leung, L.K.P., 2013. As clear as mud: a critical review of evidence for the ecological roles of Australian dingoes. Biol. Conserv. 159, 158–174.
- Ashby, K.R., 1972. Patterns of daily activity in mammals. Mammal Rev. 1, 171-185.
- Baquero, F., Sierra, R., Ordóñez, L., Tipán, M., Espinosa, L., Rivera, M.B., Soria, P., 2004. La vegetación de los Andes del Ecuador. EcoCiencia, CESLA, Corporación EcoPar, Ministerio de Agricultura, Jatun Sacha. Instituto Geográfico Militar, Quito, Ecuador.
- Boitani, L., Francisci, F., Ciucci, P., Adreoli, G., 1995. Population biology and ecology of feral dogs in central Italy. In: Serpell, J. (Ed.), The Domestic Dog: Its Evolution, Behavior, and Interactions with People. Cambridge University Press, Cambridge, UK, pp. 217–244.
- Buckland, S.T., Anderson, D.R., Burnham, K.P., Laake, J.L., Borchers, D.L., Thomas, L., 2001. Introduction to Distance Sampling: Estimating Abundance of Biological Populations. Oxford University Press, Oxford, UK.
- Buckland, S.T., Plumptre, A.J., Thomas, L., Rexstad, E.A., 2010. Design and analysis of line transect surveys for primates. Int. J. Primatol. 31, 833–847.
- Butler, J.R.A., du Toit, J.T., 2002. Diet of free-ranging domestic dogs (*Canis familiaris*) in rural Zimbabwe: implications for wild scavengers on the periphery of wildlife reserves. Anim. Conserv. 5, 29–37.
- Campos, C.B., Esteves, C.F., Ferraz, K.M.P.M.B., Crawshaw, P.G., Verdade, L.M., 2007. Diet of free-ranging cats and dogs in a suburban and rural environment, south-eastern Brazil. J. Zool. 273, 14–20.
- Carrillo, E., Wong, G., Cuarón, A.D., 2000. Monitoring mammal populations in Costa Rican protected areas under different hunting restrictions. Conserv. Biol. 14, 1580–1591.
- Carthey, A.J.R., Banks, P.B., 2012. When does an alien become a native species? A vulnerable native mammal recognizes and responds to its long-term alien predator. PLoS One 7, e31804.
- Causey, M.K., Cude, C.A., 1980. Feral dog and white-tailed deer interactions in Alabama. J. Wildl. Manag. 44, 481–484.
- Creel, S., Christianson, D., 2008. Relationships between direct predation and risk effects. Trends Ecol. Evol. 23, 194–201.
- Di Bitetti, M.S., Di Blanco, Y.E., Pereira, J.A., Paviolo, A., Jiménez Pérez, I., 2009. Time partitioning favors the coexistence of sympatric crab-eating foxes (*Cerdocyon thous*) and pampas foxes (*Lycalopex gymnocercus*). J. Mammal. 90, 479–490.
- Donadio, E., Buskirk, S.W., 2006. Diet, morphology, and interspecific killing in Carnivora. Am. Nat. 167, 524–536.
- Doncaster, C.P., Davey, A.J.H., 2007. Analysis of Variance and Covariance: How to Choose and Construct Models for the Life Sciences. Cambridge University Press, Cambridge,
- Estes, J.A., Terborgh, J., Brashares, J.S., Power, M.E., Berger, J., Bond, W.J., Carpenter, S.R., Essington, T., Holt, R.D., Jackson, J.B.C., Marquis, R.J., Oksanen, L., Oksanen, T., Paine, R.T., Pikitch, E.K., Ripple, W.J., Sandin, S.A., Scheffer, M., Schoener, T.W., Shurin, J.B., Sinclair, A.R.E., Soulé, M.E., Virtanen, R., Wardle, D.A., 2011. Trophic downgrading of planet earth. Science 333, 301–306.
- Froy, O., 2010. Metabolism and circadian rhythms. Endocr. Rev. 31, 1-24.
- Fundación Antisana (FUNAN), 1998. Compilación Técnica Científica de los Recursos Naturales y Aspectos Socioeconómicos de la Reserva Ecológica Cayambe Coca. Instituto Nacional Forestal de Áreas Naturales y Vida Silvestre (INEFAN), Quito, Ecuador.
- Galetti, M., Sazima, I., 2006. Impacts of feral dogs in an urban Atlantic forest fragment in southeastern Brazil. Nat. Conserv. 4, 146–151.
- García-Rangel, S., 2012. Andean bear Tremarctos ornatus natural history and conservation. Mammal Rev. 42, 85–119.
- Gardner, A.L., 2007. Mammals of South America. Marsupials, Xenarthrans, Shrews, and Bats vol. 1. The University of Chicago Press, Chicago, USA.
- Gerber, B.D., Karpanty, S.M., Randrianantenaina, J., 2012. Activity patterns of carnivores in the rain forests of Madagascar: implications for species coexistence. J. Mammal. 93, 667–676.
- Hofstede, R., Coppus, R., Mena Vásconez, P., Segarra, P., Wolf, J., Sevink, J., 2002. El estado de conservación de los páramos de pajonal en el Ecuador. Ecotropicos 15, 3–18.
- Hughes, J., Macdonald, D.W., 2013. A review of the interactions between free-roaming domestic dogs and wildlife. Biol. Conserv. 157, 341–351.
- IUCN, 2015. The IUCN Red List of Threatened Species. IUCN Global Species Programme, Cambridge, UK (Version 2015.2, Available from http://www.iucnredlist.org/ (accessed July 2015)).

- Josse, C., Cuesta, F., Navarro, G., Barrena, V., Becerra, M.T., Cabrera, E., Chacón-Moreno, E., Ferreira, W., Peralvo, M., Saito, J., Tovar, A., Naranjo, L.G., 2011. Physical geography and ecosystems in the tropical Andes. In: Herzog, S.K., Martínez, R., Jørgensen, P.M., Tiessen, H. (Eds.), Climate Change and Biodiversity in the Tropical Andes. Scientific Committee on Problems of the Environment, Paris, France, pp. 152–169.
- Karatsoreos, I.N., Bhagat, S., Bloss, E.B., Morrison, J.H., McEwen, B.S., 2011. Disruption of circadian clocks has ramifications for metabolism, brain, and behavior. Proc. Natl. Acad. Sci. 108, 1657–1662.
- Kavanau, J.L., Ramos, J., 1975. Influences of light on activity and phasing of carnivores. Am. Nat. 109, 391–418.
- Kelly, M.J., 2008. Design, evaluate, refine: camera trap studies for elusive species. Anim. Conserv. 11, 182–184.
- Kovach Computing Services, 2012. Oriana: Orientation and Circular Statistics. Kovach Computing Services, Wales, UK (Available from http://www.kovcomp.co.uk/oriana/(accessed July 2015)).
- Krauze-Gryz, D., Gryz, J.B., Goszczynski, J., Chylarecki, P., Zmihorski, M., 2012. The good, the bad, and the ugly: space use and intraguild interactions among three opportunistic predators cat (*Felis catus*), dog (*Canis lupus familiaris*), and red fox (*Vulpes vulpes*) under human pressure. Can. J. Zool. 90, 1402–1413.
- Lacerda, A.C.R., Tomas, W.M., Marinho-Filho, J., 2009. Domestic dogs as an edge effect in the Brasília National Park, Brazil: interactions with native mammals. Anim. Conserv. 12, 477–487.
- Lembo, T., Hampson, K., Haydon, D.T., Craft, M., Dobson, A., Dushoff, J., Ernest, E., Hoare, R., Kaare, M., Mlengeya, T., Mentzel, C., Cleaveland, S., 2008. Exploring reservoir dynamics: a case study of rabies in the Serengeti ecosystem. J. Appl. Ecol. 45, 1246–1257.
- Lima, S.L., 1998. Nonlethal effects in the ecology of predator–prey interactions. Bioscience 48, 25–34.
- Lizcano, D.J., Cavelier, J., 2000. Daily and seasonal activity of the mountain tapir (*Tapirus pinchaque*) in the central Andes of Colombia. J. Zool. 252, 429–435.
- Luttbeg, B., Kerby, J.L., 2005. Are scared prey as good as dead? Trends Ecol. Evol. 20, 416–418.
- Macdonald, D.W., Thom, M.D., 2001. Alien carnivores: unwelcome experiments in ecological theory. In: Gittleman, J.L., Funk, S.M., Macdonald, D.W., Wayne, R.K. (Eds.), Carnivore Conservation. Cambridge University Press, Cambridge, UK, pp. 93–122.
- Medina, F.M., Bonnaud, E., Vidal, E., Tershy, B.R., Zavaleta, E.S., Donlan, C.J., Keitt, B.S., Le Corre, M., Horwath, S.V., Nogales, M., 2011. A global review of the impacts of invasive cats on island endangered vertebrates. Glob. Chang. Biol. 17, 3503–3510.
- Ministerio del Ambiente, 2010. Plan de Manejo del Parque Nacional Cayambe Coca. Ministerio del Ambiente, Quito, Ecuador.
- Ministerio del Ambiente. 2012. Mapa de Vegetación del Ecuador Continental, Escala 1: 50.000. Ministerio del Ambiente, Quito, Ecuador.
- Mitchell, B.R., Banks, P.B., 2005. Do wild dogs exclude foxes? Evidence for competition from dietary and spatial overlaps. Austral Ecol. 30, 581–591.
- Murray, D.L., Kapke, C.A., Evermann, J.F., Fuller, T.K., 1999. Infectious disease and the conservation of free-ranging large carnivores. Anim. Conserv. 2, 241–254.
- Nogales, M., Martín, A., Tershy, B.R., Donlan, C.J., Veitch, D., Puerta, N., Wood, B., Alonso, J., 2004. A review of feral cat eradication on islands. Conserv. Biol. 18, 310–319.
- O'Brien, T.G., Kinnaird, M.F., Wibisono, H.T., 2003. Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Anim. Conserv. 6, 131–139
- Olmedo, J., Montoya, G., 2011. Lista Preliminar de Especies Exóticas Introducidas e Invasoras en el Ecuador Continental. Ministerio del Ambiente, Quito, Ecuador.
- Paine, R.T., 1966. Food web complexity and species diversity. Am. Nat. 100, 65-75
- Palomares, F., Caro, T.M., 1999. Interspecific killing among mammalian carnivores. Am. Nat. 153, 492–508.
- Preisser, E.L., Bolnick, D.I., Benard, M.F., 2005. Scared to death? The effects of intimidation and consumption in predator–prey interactions. Ecology 86, 501-109.
- Reppert, S.M., Weaver, D.R., 2002. Coordination of circadian timing in mammals. Nature 418, 935–941.
- Reyna-Hurtado, R., Tanner, G.W., 2005. Habitat preferences of ungulates in hunted and nonhunted areas in the Calakmul Forest, Campeche, Mexico. Biotropica 37, 676–685.
- Rosselli, L., Stiles, F.G., 2012. Local and landscape environmental factors are important for the conservation of endangered wetland birds in a high Andean plateau. Waterbirds 35, 453–469.
- Ruiz, M., Chávez, C.B., 2010. Rabies in Latin America. Neurol. Res. 32, 272–277.
- Sarmiento, F.O., 2002. Anthropogenic change in the landscapes of highland Ecuador. Geogr. Rev. 92, 213–234.
- Sih, A., Bolnick, D.I., Luttbeg, B.L., Orrock, J.L., Peacor, S.D., Pintor, L.M., Preisser, E.L., Rehage, J.S., Vonesh, J.R., 2010. Predator–prey naïveté, antipredator behavior, and the ecology of predator invasions. Oikos 119, 610–621.
- Silva-Rodríguez, E.A., Sieving, K., 2012. Domestic dogs shape the landscape-scale distribution of a threatened forest ungulate. Biol. Conserv. 150, 103–110.
- Silva-Rodríguez, E.A., Verdugo, C., Aleuy, O.A., Sanderson, J.G., Ortega Solís, G.R., Osorio Zúñiga, F., González Acuña, D., 2009. Evaluating mortality sources for the vulnerable pudu *Pudu puda* in Chile: implications for the conservation of a threatened deer. Oryx 44, 97–103.
- Silva-Rodríguez, E.A., Ortega-Solís, G.R., Jiménez, J.E., 2010. Conservation and ecological implications of the use of space by chilla foxes and free-ranging dogs in a human-dominated landscape in southern Chile. Austral Ecol. 35, 765–777.
- Smith, K.F., Sax, D.F., Lafferty, K.D., 2006. Evidence for the role of infectious disease in species extinction and endangerment. Conserv. Biol. 20, 1349–1357.
- Sweeney, J.R., Marchinton, R.L., Sweeney, J.M., 1971. Responses of radio-monitored white-tailed deer chased by hunting dogs. J. Wildl. Manag. 35, 707–716.
- Terborgh, J., Lopez, L., Nunez, P., Rao, N., Shahabuddin, G., Orihuela, G., Riveras, M., Ascanio, R., Adler, G.H., Lambert, T.D., Balbas, L., 2001. Ecological meltdown in predator-free forest fragments. Science 294, 1923–1926.

- Thomas, L., Buckland, S.T., Rexstad, E.A., Laake, J.L., Strindberg, S., Hedley, S.L., Bishop, J.R.B., Marques, T.A., Burnham, K.P., 2010. Distance software: design and analysis of distance sampling surveys for estimating population size. J. Appl. Ecol. 47, 5–14.

 Tirira, D.G., 2007. Mamíferos del Ecuador: Guía de Campo. Ediciones Murciélago Blanco,
- Quito, Ecuador.
- Tirira, D.G., 2011. Libro Rojo de los Mamíferos del Ecuador. Fundación Mamíferos y Conservación. Pontificia Universidad Católica del Ecuador, Ministerio del Ambiente, Quito, Ecuador.
- Vanak, A.T., Gompper, M.E., 2009. Dogs Canis familiaris as carnivores: their role and function in intraguild competition. Mammal Rev. 39, 265–283.
- Vanak, A.T., Dickman, C.R., Silva-Rodríguez, E.A., Butler, J.R.A., Ritchie, E.G., 2014. Top-dogs and under-dogs: competition between dogs and sympatric carnivores. In: Gompper, M.E. (Ed.), Free-Ranging Dogs and Wildlife Conservation. Oxford University Press, Oxford, UK, pp. 69–93.

 Young, K.R., 1997. Wildlife conservation in the cultural landscapes of the central Andes. Landsc. Urban Plan. 38, 137–147.
- Young, J.K., Olson, K.A., Reading, R.P., Amgalanbaatar, S., Berger, J., 2011. Is wildlife going to the dogs? Impacts of feral and free-roaming dogs on wildlife populations. Bioscience 61, 125–132.