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Abstract 148 

Structurally intact tropical forests sequestered ~50% of global terrestrial carbon uptake over 149 

the 1990s and early 2000s, offsetting ~15% of anthropogenic CO2 emissions1-3. Climate-driven 150 

vegetation models typically predict that this tropical forest ‘carbon sink’ will continue for 151 

decades4,5. However, recent inventories of intact Amazonian forests show declining carbon 152 

sequestration6. Here, we assess the trends in African forests and compare with Amazonia. 153 

Records from 244 multi-census plots spanning 11 countries reveal that the carbon sink in 154 

aboveground live biomass in intact African tropical forests has been stable for the three decades 155 

to 2015, at 0.66 Mg C ha-1 yr-1 (95% CI: 0.53-0.79). Thus, the carbon sink responses of Earth’s 156 

two largest expanses of tropical forest have diverged. As both continents show increasing tree 157 

growth (consistent with the expected net effect of rising atmospheric CO2 and air temperature 158 

on photosynthesis and respiration7), the divergence arises from differences in carbon losses from 159 

tree mortality (no detectable multi-decadal trend in Africa; monotonic increase in Amazonia). 160 

Despite the past stability of the African carbon sink, our data suggest a very recent (c. 2010) 161 

increase in carbon losses, delayed compared to Amazonia, indicating asynchronous carbon sink 162 

saturation on the two continents. A statistical model including CO2, temperature, drought, and 163 

forest dynamics can account for the observed trends. Extrapolating these predictor variables 164 

indicates a long-term decline in the African sink, being 18% smaller in 2030, while the 165 

Amazonian sink continues to rapidly weaken, reaching zero in the 2030s. Overall, the uptake of 166 

carbon into Earth’s intact tropical forests peaked in the 1990s. Furthermore, this tropical sink 167 

is set to end decades sooner than even the most pessimistic vegetation models predict4,5. 168 

Observations indicating greater recent carbon uptake into the Northern hemisphere landmass8 169 

reinforce our conclusion that the intact tropical forest carbon sink has already saturated.  170 

  171 
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Main text 172 

Tropical forests account for one-third of Earth’s terrestrial Gross Primary Productivity and half of 173 

Earth’s carbon stored in terrestrial vegetation9. Thus, small biome-wide changes in tree growth and 174 

mortality can have global impacts, either buffering or exacerbating the increase in atmospheric CO2. 175 

Models2,7,10, ground-based observations11-13, airborne atmospheric CO2 measurements3,14, inferences 176 

from remotely sensed data15, and synthetic approaches3,16,17 each suggest that, after accounting for 177 

land-use change, remaining structurally intact tropical forests (i.e. not impacted by logging or fire) are 178 

increasing in carbon stocks. This structurally intact tropical forest ‘carbon sink’ is estimated at 1.2 Pg 179 

C yr-1 over 1990-2007 using inventory plot measurements1. Yet, despite its policy relevance, changes 180 

in this key carbon sink remain highly uncertain18,19. 181 

  182 

Rising CO2 concentrations are thought to have boosted photosynthesis more than rising air 183 

temperatures have enhanced respiration, resulting in an increasing global terrestrial carbon sink2,7,16,20. 184 

Yet, for Amazonia, recent results from repeated censuses of intact forest inventory plots show a 185 

progressive two-decade decline in sink strength primarily due to an increase of carbon losses from tree 186 

mortality6. It is unclear if this simply reflects region-specific drought impacts21,22, or potentially 187 

chronic pan-tropical impacts of either heat-related tree mortality23 or internal forest dynamics resulting 188 

from past increases in carbon gains leaving the system24. A more recent deceleration of the rate of 189 

increase in carbon gains from tree growth is also contributing to the declining sink6. Again, it is not 190 

known if this is a result of either pan-tropical CO2 fertilisation saturation or rising air temperatures, or 191 

is merely a regional drought impact. To address these uncertainties, we (i) analyze an unprecedented 192 

long-term inventory dataset from Africa, (ii) pool the new African and existing Amazonian records 193 

together to investigate the putative environmental drivers of changes in the tropical forest carbon sink, 194 

and (iii) project its likely future evolution. 195 

 196 
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We collected, compiled and analysed data from structurally intact old-growth forests from the African 197 

Tropical Rainforest Observation Network25 (217 plots) and other sources (27 plots) spanning the 198 

period 1968 to 2015 (Extended Data Figure 1). In each plot (mean size, 1.1 ha), all trees ≥100 mm in 199 

stem diameter were identified, mapped and measured on at least two occasions using standardized 200 

methods (135,625 trees monitored) and live biomass carbon stocks were estimated for each census 201 

date, with carbon gains and losses calculated for each interval (Extended Data Figure 2).  202 

 203 

We detect no long-term trend in the per unit area African tropical forest carbon sink over three decades 204 

to 2015 (Figure 1). The aboveground live biomass sink averaged 0.66 Mg C ha-1 yr-1 (95% CI: 0.53-205 

0.79; n=244) and was significantly greater than zero for every year since 1990 (Figure 1). While very 206 

similar to past reports11 (0.63 Mg C ha-1 yr-1), this first estimate of the temporal trend in Africa contrasts 207 

with the Amazonian trend6 (Figure 1). A linear mixed effect model shows a significant difference in 208 

the slopes of the sink trends for the two continents over the common time window (1983-2011.5; 209 

p=0.017). Thus, the per unit area sink strength of the two largest expanses of tropical forest on Earth 210 

have diverged.  211 

 212 

The proximal cause of the divergent sink patterns is a significant increase in carbon losses (from tree 213 

mortality) in Amazonian forests, with no detectable trend over three decades in African forests (Figure 214 

1). A linear mixed effects model shows a significant difference in slopes of carbon losses between the 215 

two continents over the common time window (p=0.027). Long-term trends in carbon gains (tree 216 

growth and newly recruited trees) are similar: we could detect no difference between the continents 217 

(Figure 1b; p=0.348). However, an assessment of how underlying environmental drivers affect carbon 218 

gains and losses is needed to understand the ultimate causes of the divergent sink patterns. 219 

 220 
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A linear mixed effects model of carbon gains, with censuses nested within plots, and pooling the new 221 

African and published Amazonian data, shows a significant positive relationship with CO2, and 222 

significant negative relationships with mean annual temperature (MAT) and drought (measured as the 223 

Maximum Climatological Water Deficit, MCWD12; Figure 2; Extended Data Table 1). These results 224 

are consistent with a positive CO2 fertilization effect, and negative effects of higher temperatures and 225 

drought on tree growth, consistent with temperature-dependent increases in autotrophic respiration, 226 

and temperature- and drought-dependent reductions in carbon assimilation. By contrast the equivalent 227 

model for carbon losses shows no significant relationships with CO2, MAT or MCWD.  228 

 229 

We further investigate the responses of carbon gains and losses (for which the above analysis has no 230 

explanatory power) by expanding our potential explanatory variables to include the environmental 231 

conditions during the census interval (CO2, MAT and MCWD), the change in these conditions (CO2-232 

change, MAT-change, MCWD-change, see Extended Data Figure 3 for calculation details), and two 233 

forest attributes that may influence their response to the same environmental change: plot mean wood 234 

density (which in old-growth forests correlates with resource availability26,27), and the plot carbon 235 

residence time (which measures how long fixed carbon remains in the system, hence dictates when 236 

past increases in carbon gains leave the system as elevated carbon losses28).  237 

 238 

The minimum adequate carbon gain model has a positive relationship with CO2-change, and negative 239 

relationships with MAT, MAT-change, MCWD, and wood density (Table 2). The retention of both 240 

MAT and MAT-change suggests that higher temperatures correspond to lower tree growth, and that 241 

trees only partially acclimate to recently rising temperatures, which further reduces growth, consistent 242 

with warming experiments29 and observations30. Given that lower carbon gains are related to higher 243 

wood density (Extended Data Figure 4) which shows no temporal trend (Extended Data Figure 5) 244 
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together suggests that old-growth forests with denser-wooded tree communities typically have fewer 245 

available resources, consistent with expectations24,26.  246 

 247 

The minimum adequate carbon gain model using our expanded explanatory variables also highlights 248 

continental differences. In Africa, from 2000 to 2015, carbon gains increased by 3.64% from CO2-249 

change, but temperature rises led to a decline in gains of 0.24% (MAT and MAT-change together), 250 

and increasing droughts further depleted gains by 0.51% (Table 2). For Amazonia, from 2000 to 2015, 251 

gains increased by 3.68% due to CO2-change (as in Africa), but temperature increases reduced gains 252 

by 1.44% (six times the impact in Africa) while increasing droughts—and these forests’ greater 253 

sensitivity to drought—further reduced gains by 2.47% (five times the impact in Africa; Table 2). 254 

Thus, the recent deceleration of carbon gains increase in Amazonia6 is a response to drought and 255 

temperature and not due to unexpected saturation of CO2 fertilisation. Overall, the larger increase in 256 

gains in Africa relative to Amazonia appear to be driven by slower warming, fewer droughts, lower 257 

forest sensitivity to droughts, and overall lower temperatures (African forests are on average 1.1°C 258 

cooler than Amazonian forests, as they typically grow at ~200 m higher elevation).  259 

 260 

The minimum adequate carbon loss model using our expanded explanatory variables shows higher 261 

losses with CO2-change and MAT-change, and lower losses with MCWD and the carbon residence 262 

time (CRT; Table 2). Changes in carbon losses appear to be largely a function of carbon gains. Firstly, 263 

the greater losses in forests with shorter CRT conform to a ‘high-gain high-loss’ forest dynamics 264 

pattern24. Secondly, wetter plots have a longer growing season and so have higher gains and 265 

correspondingly higher losses, explaining the negative relationship with MCWD. Finally, as CO2 266 

results in additional carbon gains, after some time these additional past gains leave the system resulting 267 

in greater carbon losses, explaining the positive relationship with CO2-change. In addition to these 268 

relationships with carbon gains, the inclusion of MAT-change (p<0.001) indicates heat- or Vapour 269 
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Pressure Deficit-induced tree mortality23. Overall, our results imply that chronic long-term 270 

environmental change factors, temperature and CO2, rather than simply the direct effects of drought, 271 

underlie longer-term trends in tropical forest tree mortality.  272 

 273 

The minimum adequate carbon loss model using our expanded explanatory variables replicates the 274 

divergent continental trends (Figure 3). The higher loss rates in Amazonia reflect the shorter CRT of 275 

Amazonian (56 yrs, 95% CI, 54-59) compared to African forests (69 yrs, 95% CI, 66-72), while the 276 

greater increase in loss rates in Amazonia results from faster warming and a shortening of CRT, which 277 

has been stable in African forests (Extended Data Figure 5). Furthermore, given that losses appear to 278 

lag behind gains they should relate to CRT. This is what we find: the longer the CRT the smaller the 279 

increase in carbon losses, with no increase in losses for plots with CRT ≥77 years (Extended Data 280 

Figure 6). Consequently, due to the typically longer residence times of African forests, increasing 281 

losses in Africa ought to appear 10-15 years after the increase in Amazon losses began (c.1995). 282 

Strikingly, in Africa the most recently monitored plots suggest that losses began increasing from 283 

c.2010 (Extended Data Figure 7), and plots with shorter CRT are driving the increase (Extended Data 284 

Figure 8). 285 

 286 

Finally, our carbon gain and loss models can be used to estimate the future size of the per unit area 287 

intact forest carbon sink. Extrapolations of the changes in the predictor variables from 1983-2015 288 

forward to 2040 (Extended Data Figure 5) show declines in the sink on both continents. By 2030 the 289 

carbon sink in aboveground live biomass in intact African tropical forest is predicted to decline from 290 

its 2010-15 mean by 18% (1σ range, 6-39%), to 0.54 Mg C ha-1 yr-1 (1σ range, 0.39-0.65). The Amazon 291 

sink is predicted to reach zero in 2034 (1σ range, 2023-2055; Figure 3). Thus, the carbon sink strength 292 

of the world’s two most extensive tropical forests have now saturated, albeit asynchronously.  293 

 294 
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Together, our measurements and analyses signify that Earth recently passed the point of peak carbon 295 

sequestration into intact tropical forests (Table 1). The continental sink in Amazonia peaked in the 296 

1990s and has declined since, driven by both reduced sink strength and forest area (Table 1; see 297 

Extended Data Table 2 for forest area). The African sink also peaked in the 1990s. In the 2000-10 298 

decade the per ha sink peaked but was more than countered by continued forest area decline (Table 1). 299 

Including the modest uptake in the much smaller area of Asian tropical forest indicates that total pan-300 

tropical carbon uptake peaked in the 1990s (Table 1). Given that the global terrestrial carbon sink has 301 

continued to increase, our results strongly imply that the extra-tropical terrestrial carbon sink has 302 

increased over the past two decades. Independent inter-hemispheric analyses of atmospheric CO2 show 303 

Northern hemisphere forests have increased uptake over this time period8.  304 

 305 

In summary, while intact tropical forests remain key centres of biodiversity and major stores of carbon, 306 

our results show that their ability to sequester additional carbon is waning. Although tropical forests 307 

are more immediately threatened by deforestation and degradation, our analyses show that they are 308 

impacted by climate change. Given that no climate-driven vegetation model shows that peak net carbon 309 

uptake into intact tropical forests has already been passed4,5, our analyses suggest that climate change 310 

impacts in the tropics may become more severe than predicted. Our findings also have political 311 

implications: as tropical forests are likely to sequester less carbon in the future than Earth System 312 

Models predict, an earlier date to reach net zero anthropogenic greenhouse gas emissions will be 313 

required to meet any given commitment to limit the global heating of Earth.  314 

 315 
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Figures and Tables 366 

 367 

 368 

 369 

 370 

 371 

 372 

 373 

 374 

 375 

 376 

 377 

 378 

 379 

 380 

 381 

 382 

 383 

Figure 1. Long-term carbon dynamics of structurally intact tropical forests in Africa (blue) and 384 

Amazonia (brown). Trends in net aboveground live biomass carbon sink (a), carbon gains to the 385 

system from wood production (b), and carbon losses from the system from tree mortality (c), measured 386 

in 244 African inventory plots (blue lines) and contrasting published6 Amazonian inventory data 387 

(brown lines; 321 plots). Shading corresponds to the 95% CI, with less transparent shading indicating 388 

a greater number of plots monitored in that year (most transparent: minimum 25 plots monitored). 389 

Printed slopes and p-values are from linear mixed effects models.  390 
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 391 

 392 

 393 

 394 

 395 

 396 

 397 

 398 

 399 

 400 

 401 

Figure 2. Potential environmental drivers of carbon gains and losses in structurally intact old-402 

growth African and Amazonian tropical forests. The aboveground carbon gains, from woody 403 

productivity (a-c), and aboveground carbon losses, from mortality (d-f), are plotted as time-weighted 404 

plot-level mean values against the corresponding values of atmospheric carbon dioxide concentration 405 

(CO2), mean annual air temperature (MAT) and drought (as Maximum Climatological Water Deficit, 406 

MCWD), for African (blue) and Amazonian (brown) inventory plots. Linear mixed effect models were 407 

performed with census intervals (n=1566) nested within plots (n=565), using an empirically derived 408 

weighting based on interval length and plot area (see methods); solid lines show significant regression 409 

lines for the complete dataset and non-significant regressions are shown as dashed lines. Transparency 410 

of the inner part of each data point represents total monitoring length, with empty circles corresponding 411 

to plots monitored for ≤ 5 years and solid dots for plots monitored for >20 years. Carbon loss data are 412 

presented untransformed for clarity; linear mixed effects models on data transformed to fit normality 413 

assumptions do not change the significance of the results (see Extended Data Table 1).  414 
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 415 

 416 

 417 

 418 

 419 

 420 

 421 

 422 

 423 

 424 

 425 

 426 

 427 

Figure 3. Modelled past and future carbon dynamics of structurally intact tropical forests in 428 

Africa and Amazonia. Predictions of net aboveground live biomass carbon sink (a,d), carbon gains 429 

(b,e), and carbon losses (c,f), for African (left panels) and Amazonian (right panels) plot inventory 430 

networks, based on CO2-change, Mean Annual Temperature, Mean Annual Temperature-change, 431 

drought (as Maximum Climatological Water Deficit), plot wood density and plot carbon residence 432 

time. Model predictions are in blue (Africa) and brown (Amazon), with solid lines spanning the 433 

window when ≥75% of plots were monitored to show model consistency with the observed trends, and 434 

shading showing ±1σ uncertainty. Light grey lines and grey shading are from Fig.1, the mean observed 435 

and 95% CI of the observed trends.  436 

 437 

 438 

 439 
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Table 1. Carbon sink in intact forests in Africa, Amazonia and the pan-tropics: 1980-2015 and 440 

predictions to 2040 (in italics). Mean values in bold; in brackets 95% bootstrapped confidence 441 

intervals for the monitored period (1980-2015), and 2σ for the predictions (2010-2040). 442 

Period   n  Per unit area aboveground C sink    Total Continental C sink * 

  
(plots)  (Mg C ha-1 yr-1) 

 
(Pg C yr-1) 

  
 

Af. Am.  Africa Amazon 
 

Africa Amazon   Pan-tropics † 

1980-1990 
 

45 73  0.33 (0.06-0.63) 0.35 (0.06-0.59) 
 

0.28 (0.05-0.53) 0.49 (0.08-0.82) 
 

0.87 (0.17-1.53) 

1990-2000 
 

96 172  0.67 (0.43-0.89) 0.53 (0.42-0.65) 
 

0.50 (0.32-0.66) 0.68 (0.54-0.83) 
 

1.26 (0.88-1.64) 

2000-2010 
 

194 291  0.70 (0.55-0.84) 0.38 (0.26-0.48) 
 

0.46 (0.37-0.56) 0.45 (0.31-0.57) 
 

0.99 (0.70-1.25) 

2010-2015 
 

184 172  0.66 (0.40-0.91) 0.24 (0.00-0.47) 
 

0.40 (0.24-0.56) 0.27 (0.00-0.52) 
 

0.73 (0.26-1.18) 

2010-2020 ‡ - -  0.63 (0.49-0.69) 0.23 (0.13-0.30)  0.37 (0.29-0.41) 0.25 (0.14-0.33)  0.68 (0.45-0.83) 

2020-2030 ‡ - -  0.57 (0.28-0.70) 0.12 (-0.05-0.24)  0.30 (0.15-0.37) 0.12 (-0.05-0.24)  0.46 (0.11-0.68) 

2030-2040 ‡  - -  0.51 (0.06-0.72) -0.02 (-0.28-0.16)   0.24 (0.03-0.34) -0.02 (-0.26-0.15)   0.25 (-0.22-0.53) 

 443 

* Total Continental C sink is the per unit area aboveground C sink multiplied by intact forest area. Forest area 444 

is from ref.1 for 1990, 2000 and 2010 (i.e. the total forest area minus forest regrowth); to estimate intact forest 445 

area for 1980, 2015, 2020, 2030 and 2040 we fitted exponential models for each continent using the 1990-2010 446 

data. Total Continental C sink includes estimates of trees <100 mm DBH, lianas and roots, following ref.11 for 447 

Africa and ref.6 for Amazonia. 448 

† Pan-tropical total carbon sink is the sum of African, Amazonian and Southeast Asian total continental carbon 449 

sink values. Southeast Asian values were estimated from forest area from ref.1 and published per unit area carbon 450 

sink data13 (n=49 plots) for 1990-2015, with 1980-1990 assumed to be the same as 1990-2000 due very low 451 

sample sizes. The sink in Southeast Asia has been a modest and declining contribution to the pan-tropical sink, 452 

at 0.12, 0.09 and 0.08 Pg C yr-1 in the 1980s, 1990s, and 2000s.  453 

‡ Per unit area total C sink for 2010-2020, 2020-2030 and 2030-2040 was predicted using parameters from 454 

Table 2, except for the sink in Asia we assumed the parameters as for Africa, as Asian forest median CRT is 61 455 

years, close to African median, 63 years.  456 

 457 
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Table 2. Minimum adequate models to predict carbon gains and losses in African and 458 

Amazonian tropical forests. Where continental values differ, those for Africa are reported first, 459 

followed by Amazonian values. 460 

Carbon gains, Mg C ha-1 yr-1 

Predictor variable 
 

Parameter 

value 

Standard 

Error 

t-value p-value 2000-2015 

change in gains 

(%) * 

(Intercept) 
 

 5.400 | 5.530 0.592 | 0.599  9.121 | 9.236 <0.001 | <0.001 - 

CO2-change (ppm yr-1) 
 

 0.234 0.096  2.429  0.015  3.64% | 3.68% 

MAT (°C) 
 

-0.087 0.025 -3.463  0.001 -0.76% | -1.14% 

MAT-change (°C yr-1) 
 

-0.766 0.189 -4.051 <0.001  0.52% | -0.3% 

MCWD (mm x1000) 
 

-0.411 | -1.381 0.376 | 0.239 -1.091 | -5.787  0.275 | <0.001 -0.51% | -2.47% 

Wood Density (g cm-3)   -1.350 0.527 -2.561  0.011  0.05% | 0.00% 

Carbon losses, Mg C ha-1 yr-1 † 

Predictor variable 
 

Parameter 

value 

Standard 

Error 

t-value p-value 2000-2015 

change in losses 

(%) * 

(Intercept) 
 

 1.213 0.087 13.931 <0.001 - 

CO2-change (ppm yr-1) 
 

 0.125 0.059  2.135  0.033 13.29% | 11.95% 

MAT-change (°C yr-1) 
 

 0.478 0.130  3.673 <0.001 -1.73% | 0.89% 

MCWD (mm x1000) 
 

-0.218 0.107 -2.042  0.041 -1.33% | -1.74% 

CRT (yr)   -0.003 0.001 -5.913 <0.001 -0.68% | 1.14% 

* The 2000-2015 change in gains/losses for each predictor variable was estimated allowing only the focal 461 

predictor to vary; this change was then expressed as a percentage of the annual gains/losses in the year 2000 462 

allowing all predictors to vary. 463 

† carbon loss values were normalized via power-law transformation, λ= 0.361. 464 
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Methods 538 

 539 

Plot selection 540 

Closed canopy (i.e. not woody savanna) old-growth mixed-age forest inventory plots were selected 541 

using commonly used criteria6,11,25: free of fire and industrial logging; all trees with diameter at 542 

reference height ≥100 mm measured at least twice; ≥0.2 ha area; <1500 m.a.s.l. altitude; MAT 543 

≥20.0°C31; annual precipitation ≥1000 mm31 ; located ≥50 m from anthropogenic forest edges. Of the 544 

244 plots included in the study, 217 contribute to the African Tropical Rainforest Observatory Network 545 

(AfriTRON; www.afritron.org), with data curated at www.ForestPlots.net. These include plots from 546 

Sierra Leone, Liberia, Ghana, Nigeria, Cameroon, Gabon, Republic of Congo, Democratic Republic 547 

of Congo (DRC), Uganda and Tanzania32 (Extended Data Figure 1). Fifteen plots are part of the TEAM 548 

network, from Cameroon, Republic of Congo, Tanzania, and Uganda33-36. Nine plots contribute to the 549 

ForestGEO network, from Cameroon and DRC37 (9 plots from DRC, codes SNG, contribute to both 550 

AfriTRON and ForestGEO networks, included above in the AfriTRON total). Finally, three plots from 551 

Central African Republic are part of the CIRAD network38. The large majority of plots are sited in 552 

terra firme forests and have mixed species composition, although four are in seasonally flooded forest 553 

and 14 plots are in Gilbertiodendron dewevrei monodominant forest, a locally common forest type in 554 

Africa (Supplementary Table 1). The 244 plots have a mean size of 1.1 ha (median, 1 ha), with a total 555 

plot area of 277.9 ha. The dataset comprises 391,968 diameter measurements on 135,625 stems, of 556 

which 89.9% were identified to species, 97.5% to genus and 97.8% to family. Mean total monitoring 557 

period is 11.8 years, mean census length 5.7 years, with a total of 3,214 ha years of monitoring. The 558 

321 Amazon plots are published and were selected using the same criteria6, except in the African 559 

selection criteria we specified a minimum anthropogenic edge distance and added a minimum 560 

temperature threshold. 561 

 562 
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Plot inventory and Tree Biomass Carbon Estimation 563 

Tree-level aboveground biomass carbon is estimated using an allometric equation with parameters for 564 

tree diameter, tree height and wood mass density. The estimated aboveground biomass of a plot is the 565 

sum of the estimated biomass of all live trees at that census date.  566 

 567 

Tree Diameter: In all plots, all woody stems with ≥100 mm diameter at 1.3 m from the base of the 568 

stem (‘diameter at breast height’, DBH), or 0.5 m above deformities or buttresses, were measured, 569 

mapped and identified using standard forest inventory methods39. The height of the point of 570 

measurement (POM) was marked on the trees and recorded, so that the same POM is used at the 571 

subsequent forest census. For stems developing deformities or buttresses over time that could 572 

potentially disturb the initial POM, the POM was raised approximately 500 mm above the deformity. 573 

Estimates of the diameter growth of trees with changed POM used the ratio of new and old POMs, to 574 

create a single trajectory of growth from the series of diameters at two POM heights6,11,40. We used 575 

standardized protocols to assess typographical errors and potentially erroneous diameter values (e.g. 576 

trees shrinking by >5 mm), missing values, failures to find the original POM, and other issues. Where 577 

necessary we estimated the likely value via interpolation or extrapolation from other measurements of 578 

that tree, or when this was not possible we used the median growth rate of trees in the same plot, census 579 

and size-class, defined as DBH = 100-199 mm, or 200-399 mm, or >400 mm32,41. We interpolate 580 

measurements for 1.3% of diameters, extrapolate 0.9%, and use median growth rates for 1.5%.  581 

 582 

Tree height: Height of individuals from ground to the top leaf, hereafter Ht, was measured in 204 plots, 583 

using a laser hypsometer (Nikon forestry Pro) from directly below the crown (most plots), a laser or 584 

ultrasonic distance device with an electronic tilt sensor, a manual clinometer, or by direct 585 

measurement, i.e. tree climbing. Only trees where the top was visible were selected42. In most plots, 586 

tree selection was similar: the 10 largest trees were measured, together with 10 randomly selected trees 587 
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per diameter from five classes: 100-199 mm, 200-299 mm, 300-399 mm, 400-499 mm, and 500+ mm 588 

trees, following standard protocols42. We use these data and the local.heights function in R package 589 

BiomasaFP43 to fit 3-parameter Weibull relationships: 590 

 𝐻" = 𝑎	 × (1 − 𝑒+,-	×.
/01
23 4

5
6) (equation 1).  591 

We chose the Weibull model as it is known to be robust when a large number of measurements are 592 

available42,44. We parameterize this Ht-DBH relationship for terra firme forest in three biogeographical 593 

regions, parameters in parentheses: (i) West Africa (a=56.0; b=0.0401; c=0.744); (ii) Lower Guinea 594 

and Western Congo Basin (a=47.6; b=0.0536; c=0.755); (iii) Eastern Congo Basin and East Africa 595 

(a=50.8; b=0.0499; c=0.706); and finally (iv) for seasonally flooded forest from Lower Guinea and 596 

Western Congo Basin (a=38.2; b=0.0605; c=0.760; there were no seasonally flooded forest plots in 597 

the other regions). The parameters were used to estimate Ht from DBH for all tree DBH measurements 598 

for input into the allometric equation.  599 

 600 

Wood Density: Dry wood density (ρ) measurements were compiled for 730 African species from 601 

published sources and stored in www.ForestPlots.net; most were sourced from the Global Wood 602 

Density Database on the Dryad digital repository (www.datadryad.org)45,46. Each individual in the tree 603 

inventory database was matched to a species-specific mean wood density value. Species in both the 604 

tree inventory and wood density databases were standardized for orthography and synonymy using the 605 

African Flowering Plants Database (www.ville-ge.ch/cjb/bd/africa/) to maximize matches11. For 606 

incompletely identified individuals or for individuals belonging to species not in the ρ database, we 607 

used the mean ρ value for the next higher known taxonomic category (genus or family, as appropriate). 608 

For unidentified individuals, we used the mean wood density value of all individual trees in the 609 

plot11,32. 610 

 611 
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Allometric equation: For each tree we use a published allometric equation47 to estimate aboveground 612 

biomass. We then convert this to carbon, assuming that aboveground carbon (AGC) is 45.6% of 613 

aboveground biomass48. Thus: 𝐴𝐺𝐶 = 0.456 ×	((0.0673 × (𝜌	 × .CDE
FG
4
H
	× 𝐻")G.IJK) 1000)L  614 

(equation 2), with DBH in mm, dry wood density, ρ, in g cm-3, and total tree height, Ht, in m (ref.47). 615 

 616 

Aboveground biomass carbon, carbon gains and carbon losses 617 

Aboveground Carbon (AGC, in Mg C ha-1) in living biomass for each plot at each census date was 618 

estimated as the sum of the AGC of each living stem, then divided by plot area (in hectares). 619 

 620 

Carbon Gain is the sum of the aboveground live biomass carbon additions from the growth of 621 

surviving stems and the addition of newly recruited stems, using standard methods6. For each stem 622 

that survived a census interval, carbon additions from its growth (Mg C ha-1 yr-1) were calculated as 623 

the difference between its AGC at the end census of the interval and its AGC at the beginning census 624 

of the interval. For each stem that recruited during the census interval (i.e. reaching DBH≥100 mm), 625 

carbon additions were calculated in the same way, assuming DBH=0 mm at the start of the interval40. 626 

The carbon additions in an interval, from surviving and newly recruited stems, were summed, then 627 

divided by the census interval length (in years), and scaled by plot area (in hectares)40. As carbon gains 628 

are affected by a census interval bias, with the underestimate increasing with census length, we 629 

corrected this bias by accounting for (i) the carbon additions from trees that recruited and then died 630 

within the same interval (unobserved recruitment), and (ii) the carbon additions from trees that grew 631 

before they died within an interval (unobserved growth)40. These typically add <3% to plot-level 632 

carbon gains.  633 

 634 

Carbon Loss (in Mg C ha-1 yr-1) is estimated, using standard methods6, as the sum of aboveground 635 

biomass carbon from all stems that died during a census interval, divided by the census length (in 636 
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years) and scaled by plot area (in hectares). Carbon loss is also affected by the same census interval 637 

bias, hence we corrected this bias by accounting for (i) the additional carbon losses from the trees that 638 

were recruited and then died within the same interval, and (ii) the additional carbon losses resulting 639 

from the growth of the trees that died in the interval6,13,43.  640 

 641 

Net Carbon Sink (in Mg C ha-1 yr-1) is estimated as carbon gains minus carbon losses. All calculations 642 

were performed using the R statistical platform, version 3.2.149 using the BiomasaFP R package 643 

v0.2.143.  644 

 645 

Long-term gain, loss and net carbon sink trends estimation 646 

The estimated mean carbon gains, carbon losses and the net carbon sink of the African plots from 647 

1983-2014, the solid lines in Figure 1, were calculated following ref.6 to allow direct comparison with 648 

published Amazonian results. First, each census interval value was interpolated for each 0.1-yr period 649 

within the census interval. Then, for each 0.1-yr period between 1983 and 2014, we calculate a 650 

weighted mean of all plots monitored at that time, using the square root of plot area as a weighting 651 

factor6. Finally, confidence intervals for each 0.1-yr period are bootstrapped. The means and 652 

confidence intervals shown in Extended Data Figure 7 and Extended Data Figure 8 were also 653 

calculated using this method. 654 

 655 

Trends in carbon gains, losses and the net carbon sink over time were assessed using linear mixed 656 

effects models (lmer function in R, lme4 package50), providing the linear slopes reported in Figure 1. 657 

These models regress the mid-point of each census interval against the value of the response variable 658 

for that census interval. Plot identity was included as a random effect, i.e. assuming that the intercept 659 

can vary randomly among plots. Observations were weighted by plot size and census interval length. 660 

Weightings were derived empirically, by assuming a priori that there is no significant relation between 661 
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the net carbon sink and census interval length or plot size11. The following weighting removes all 662 

pattern in the residuals: 663 

Weight= Mlengthint
3 + Mplotsize4 	-1 (equation 3), 664 

where lengthint is the length of the census interval, in years. Significance was assessed by regressing 665 

the residuals of the net carbon sink model against the weights (p=0.702).  666 

 667 

Differences in long-term slopes between the two continents for carbon gains, carbon losses and net 668 

carbon sink were assessed using linear mixed effects models, as described above, but performed on 669 

the combined African and Amazonian datasets and limited to their common time window, 1983 to 670 

2011.5. These models had an interaction term between census interval date and continent, where a 671 

significant interaction would indicate that the slopes differ between continents. The statistical 672 

significance of continental differences in slope were assessed using the F-statistic (Anova function in 673 

R, car package51). 674 

 675 

Continental and pan-tropical carbon sink estimates 676 

For Africa, Amazonia and Southeast Asia, we calculate the continental-scale total carbon sink (Pg C 677 

yr-1) for each decade between 1980 and 2010 and for 2010-2015 (Table 1). We do this by multiplying 678 

the per unit area total net carbon sink (in Mg C ha-1 yr-1; using all plots monitored in each of the time 679 

intervals), by the area of intact forest on each continent at that time interval (in ha).  680 

 681 

For each time period we calculate the per unit area aboveground net carbon sink in living trees with 682 

DBH≥100 mm (expressed in Mg C ha-1 yr-1) as the mean of all plot-level values, using plots for which 683 

census dates overlap the time window, with plots weighted by the square root of plot area (as for the 684 

solid lines in Figure 1). For plots with more than one census interval within the target time window, 685 

the time-weighted average of the intervals was used. For Africa we use the per unit area net carbon 686 
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sink values presented in this paper. For Amazonia, we use data presented in this paper and previously 687 

published in ref.6. For Southeast Asia, we use inventory data collected using similar standardized 688 

methods, for 49 plots in ref.13. However there is a lack of Asian data covering 1980-1990, so we assume 689 

that the per unit area net carbon sink for this decade is the same as for 1990-2000. We then calculate 690 

the per unit area total carbon sink (in Mg C ha-1 yr-1) for each period, as the sum of (i) the per unit area 691 

aboveground carbon sink from large living trees and lianas with DBH≥100 mm; (ii) the per unit area 692 

aboveground carbon sink from living trees and lianas with DBH<100 mm (5.19%, 9.40% and 5.46% 693 

of carbon of large living trees in Africa, Amazonia and Southeast Asia respectively52); and (iii) the per 694 

unit area belowground carbon sink in live biomass, i.e. roots (assuming belowground carbon is 25%, 695 

37% and 17% of aboveground carbon of large living trees in Africa11, Amazonia6 and Southeast Asia53 696 

respectively).  697 

 698 

For comparability with previous continental-sink results, we used continental values of intact forest 699 

area for 1990, 2000 and 2010 as published in ref.1, i.e. total forest area minus forest regrowth. We used 700 

the 1990-2010 data to fit an exponential model for each continent and used this model to estimate 701 

intact forest area for 1980 and 2015 (Extended Data Table 2). The continent-level total carbon sink 702 

(Pg C ha-1 yr-1) for each period is the total per unit area total carbon sink (in Mg C ha-1 yr-1) scaled by 703 

the area of remaining intact tropical forest (in ha). 704 

 705 

Predictor variables 706 

We examined potential predictor variables for each census interval of each plot that may explain the 707 

long-term trends in carbon gains and carbon losses. First, the environmental conditions during the 708 

census interval; second the rate of change of these parameters; and third forest attributes that may 709 

affect how different forests respond to the same environmental change. The predictor variable 710 

estimates for each census need to avoid bias due to seasonal variation, for example the intra-annual 711 
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variability in atmospheric CO2 concentration. We therefore applied the following procedure to avoid 712 

seasonal variability impacts on long-term trends: (i) the length of each focal census interval was 713 

rounded to the nearest complete year (e.g. a 1.1 year interval became a 1 year interval); (ii) we 714 

computed dates that minimised the difference between actual fieldwork dates and complete-year 715 

census dates, while ensuring that subsequent census intervals of a plot do not overlap. The resulting 716 

sequence of non-overlapping census intervals was used to calculate interval-specific means for each 717 

environmental predictor variable to remove seasonal effects. The average difference between the actual 718 

fieldwork dates and the complete-year census dates is 0.01 decimal years (i.e. less than one week). 719 

 720 

The first group of potential predictor variables, estimated for each census interval of each plot, are 721 

theory-driven choices: atmospheric CO2 concentration (CO2), mean annual temperature (MAT), and 722 

drought intensity, which we quantified as maximum climatological water deficit (MCWD)54. 723 

Atmospheric CO2 concentration (CO2, in ppm) is estimated as the mean of the monthly mean values 724 

from the Mauna Loa record55 over the census interval (corrected to avoid seasonality effects). While 725 

atmospheric CO2 concentration is highly correlated with time (R²=0.98), carbon gains are slightly 726 

better correlated with CO2, as expected.  727 

 728 

Mean Annual Temperature (MAT, in °C) was derived from a combination of the fine-scale (~1 km² 729 

resolution) static WorldClim dataset31 and the coarser scale (~3025 km² resolution) temporally 730 

resolved Climatic Research Unit dataset (CRU TS 3.23)56. For each plot, we first extracted the monthly 731 

mean temperature record covering 1901-2015 from the CRU dataset and calculated mean annual 732 

temperature (MAT) over that period. Then we multiplied each value in the monthly CRU record by 733 

the ratio of the WorldClim-MAT and the CRU-MAT. We then calculated MAT for each census 734 

interval of each plot using the adjusted monthly CRU record.  735 

 736 
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Maximum Climatological Water Deficit (MCWD, in mm) was derived from a combination of the fine-737 

scale (~1 km2 resolution) static WorldClim precipitation dataset31 and the coarser scale (~3025 km² 738 

resolution) temporally resolved Global Precipitation Climatology Centre dataset (GPCC) that includes 739 

many more gauges than CRU in tropical Africa57,58 following a similar approach as to MAT. However, 740 

as GPCC ends in 2013 we combined it with satellite-based Tropical Rainfall Measurement Mission 741 

data (TRMM 3B43 V7 product, 0.25o resolution)59. The fit for the overlapping time period (1998-742 

2013) was used to correct the systematic difference between GPCC and TRMM: GPCC’ = a+b*GPCC, 743 

with GPCC’ the adjusted GPCC record and a and b different parameters for each month of the year 744 

and for each continent. For each plot, we first extracted the monthly precipitation record covering 745 

1901-2015 from the adjusted GPCC dataset and calculated mean monthly precipitation over that 746 

period. Then we multiplied each value in the monthly GPCC record by the ratio of the WorldClim 747 

mean monthly precipitation to the GPCC mean monthly precipitation. Then for each census interval 748 

we extract monthly precipitation values and calculate monthly Climatological Water Deficit (CWD), 749 

which is a commonly used metric of dry season intensity for tropical moist forests12,20,54. To avoid 750 

intra-annual variability, monthly CWD values are calculated for each subsequent series of 12 months 751 

(complete years), using a recursive procedure54. Monthly CWD estimation begins with the wettest 752 

month of the first year in the interval, and is calculated as 100 mm per month evapotranspiration (ET) 753 

minus monthly precipitation (P). Then, CWD values for the subsequent 11 months were calculated 754 

recursively as: 𝐶𝑊𝐷P = 	𝐸𝑇 − 𝑃P +	𝐶𝑊𝐷P,F (equation 4), where negative CWDi values were set to 755 

zero54 (no drought conditions). This procedure was repeated for each subsequent complete 12 months. 756 

Then, we calculate the annual MCWD as the largest monthly CWD value for every subsequent 757 

complete year within the census interval. Finally the MCWD of a census interval is calculated as the 758 

mean of the annual MCWD values within the census interval. MCWD is an easily interpretable drought 759 

metric: larger values indicate more severe water deficits. 760 

 761 
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To calculate the environmental change of potential predictor variables, CO2-change, MAT-change and 762 

MCWD-change, we selected an optimum period over which to calculate the change. We derived this 763 

optimum period empirically by assessing the correlation of carbon gains (all plots, all censuses) with 764 

the change in each environmental variable, using linear mixed effects models (lmer function in R, lme4 765 

package50). The annualised change in the environmental variable was calculated as the change between 766 

the focal interval and a prior interval (termed the baseline period) with a lengthening time window 767 

ranging from 1 year through to 80 years prior to the focal interval (i.e. 80 linear mixed effects models 768 

per variable). We calculated AIC for each model and selected the interval length with the lowest AIC. 769 

Thus, MAT-change (in °C yr-1) = 	 (UVWX,UVWY)
(Z["\X,Z["\Y)

 (equation 5), where MATi is the MAT over the focal 770 

census interval calculated using the procedure described above, MATb is the MAT over a baseline 771 

period prior to the focal interval, datei is the mid-date of the focal census interval and dateb is the mid-772 

date of the baseline period. The lmer results show that MAT-change (in °C yr-1) is the difference 773 

between the focal interval and the mean MAT over the prior 5 years; CO2-change is the difference 774 

between the focal interval and the mean CO2 over the prior 56 years. MCWD showed no clear trend, 775 

so MCWD-change was not included in the models. All three results conform to a priori theoretical 776 

expectations: see Extended Data Figure 3.  777 

 778 

We calculated two forest attributes that may alter responses to environmental change as potential 779 

predictor variables: Wood Density (WD) and Carbon Residence Time (CRT). In intact old-growth 780 

forests, mean WD (in g cm-3) is inversely related to resource availability26,60,61, as is seen in our dataset 781 

(carbon gains and plot-level mean WD are negatively correlated, Extended Data Figure 4). WD is 782 

calculated for each census in the dataset, as the mean WD of all trees alive at the end of the census. 783 

Carbon residence time (CRT, in yrs) is a measure of the time that fixed carbon stays in the system. 784 

CRT is a potential correlate of the impact of past carbon gains on later carbon losses28. To avoid 785 

circularity in the models, the equation used to calculate CRT differed depending on the response 786 
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variable. If the response variable is carbon loss, the CRT equation is based on gains: 𝐶𝑅𝑇 = V^_
`[Pab

 787 

(equation 6), with AGC for each interval based on AGC at the end of the interval, and the gains for 788 

each interval calculated as the mean of the gains in the interval and the previous intervals (i.e. long-789 

term gains). If the response variable is carbon gain, the CRT equation is based on losses: 𝐶𝑅𝑇 = V^_
cdbb\b

 790 

(equation 7). The equation employed for use in the carbon loss model (equation 6) is the standard 791 

formula used to calculate CRT and is retained in the minimum adequate model (see below and Table 792 

2). The non-standard CRT equation (equation 7) used in the carbon gain model is not retained in the 793 

minimum adequate model (see below).  794 

 795 

Modelling census-level carbon gains and losses 796 

We first construct two models including only the environmental variables: atmospheric carbon dioxide 797 

(CO2), mean annual temperature (MAT), and drought as maximum climatological water deficit 798 

(MCWD). One model has carbon gains as the response variable, the other has carbon losses as the 799 

response variable (both in Mg C ha-1 yr-1). Models were fitted using the lme function in R, with 800 

maximum likelihood (NLME package62). All census intervals within all plots were used, weighted by 801 

plot size and census length (using equation 3). Plot identity was included as a random effect, i.e. 802 

assuming that the intercept can vary randomly among plots. All predictor variables in the models were 803 

scaled without centering (scale function in R, RASTER package49). Carbon gain values were normally 804 

distributed but carbon loss values required a power-law transformation (λ= 0.361) to meet normality 805 

criteria. Multi-parameter models are: 806 

carbon gains=intcp+a*𝐶𝑂H+b*MAT+c*MCWD (model 1); 807 

carbon losses=intcp+a*𝐶𝑂H+b*MAT+c*MCWD (model 2); 808 

where intcp is the estimated model intercept, and a, b, and c are model parameters giving the slope of 809 

relationships with environmental predictor variables. Multi-parameter model outputs for carbon gain 810 

and carbon loss are given in Extended Data Table 1. Single-parameter relations are shown in Figure 2. 811 
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 812 

The carbon gains model shows significant trends consistent with a priori expectations. However, the 813 

carbon loss model has no explanatory power (all parameters non-significant, see Figure 2 and Extended 814 

Data Table 1), so we further investigated what is driving the trends by constructing two more complex 815 

models, including the same environmental predictors (CO2, MAT, MCWD), plus their rate of change 816 

(CO2-change, MAT-change, MCWD-change), and forest attributes that may alter how forests respond 817 

(WD, CRT), as described above. We evaluated the possible inclusion of a differential continent effect 818 

of each variable in the full model. We first construct models with only a single predictor variable, and 819 

allow different slopes in each continent. Next, if removal of the continent-specific slope (using 820 

stepAIC function in R, MASS package63) decreased model Akaike Information Criterion (AIC) then 821 

the continent-specific slope was not included in the full model for that variable. Only MCWD showed 822 

a significant differential continent-specific slope. This implies that forests on both continents have 823 

common responses to CO2-change, MAT, MAT-change, WD and CRT, but respond differently to 824 

differences in MCWD. This is most likely because wet-adapted species are much rarer in Africa than 825 

in Amazonia as a result of large differences in past climate variation64. Lastly, we allowed different 826 

intercepts for the two continents, to potentially account for differing biogeographical or other 827 

continent-specific factors. For the carbon loss model, we applied the same continent-specific effects 828 

for slope as for the carbon gain model, and carbon loss values were transformed using a power-law 829 

transformation (λ= 0.361) to meet normality criteria. 830 

 831 

For both carbon gains and losses we parameterized full models including the significant continent-832 

specific effect of MCWD and simplified models using the stepAIC function in R, which sequentially 833 

removes terms until there are no terms that reduce model AIC after removal. As such, the minimum 834 

adequate models are: 835 

This is a preprint version of this article. The final published version may differ. Please contact library@wcs.org for more information.



36 
 

carbon gains=intcp*continent +a*𝐶𝑂H-change+b*MAT+c*MAT-change+d*MCWD*continent+e*WD 836 

(model 3);  837 

carbon losses=intcp+a*𝐶𝑂H-change+b*MAT-change+c*MCWD+d*CRT (model 4).  838 

Parameters of these minimum adequate models for carbon gain and carbon loss are given in Table 2. 839 

CRT was retained in the carbon loss model, and WD was retained in the carbon gain model. These 840 

results are expected a priori because growth is likely primarily impacted by resource availability, while 841 

losses are likely primarily impacted by how long fixed carbon is retained in the system. 842 

 843 

Predicting the future carbon gain, loss and the net carbon sink 844 

We used estimates of the predictor variables and the parameters of the minimum adequate gain and 845 

loss models (Table 2) to estimate the mean gains and losses for the plot networks in Africa and 846 

Amazonia from 1983 through to 2040, with the net carbon sink per unit area obtained by subtracting 847 

the losses from the gains (seen in Figure 3). For predictor variables in the past, we calculated annual 848 

records for CO2-change, MAT, MAT-change, MCWD, WD and CRT for each plot location from 1983 849 

to 2015, as described above (mean trends shown in Extended Data Figure 5). For predictor variables 850 

in the future, we used the annual records from 1983 to 2015 to parameterize a continent-specific linear 851 

regression for CO2-change, MAT, MAT-change, MCWD, WD, and CRT, which is used to estimate 852 

predictor variables for each plot location from 2015 to 2040 (mean trends shown in Extended Data 853 

Figure 5). Predicted mean annual gains and losses for 1983 to 2040 are calculated by multiplying 854 

model parameters by annual values of the corresponding predictor variables. Model prediction 855 

uncertainty is derived from model parameters multiplied by each predictor variable value ±1σ. To 856 

obtain total continental sink values in the future (Table 1), per unit area sink estimates were multiplied 857 

by future forest area, using the area in each continent from 1990-2010 and an exponential model for 858 

each continent to estimate each continents’ forest area in 2020, 2030 and 2040 (see Continental and 859 

pan-tropical carbon sink estimates, above).  860 
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 861 

Extended Data 862 

 863 

Extended Data Table 1. Models based on environmental variables alone to predict carbon gains 864 

and losses in African and Amazonian tropical forests. Where continental values differ, those for 865 

Africa are reported first, followed by Amazon values. Significant values in bold. 866 

Carbon gains, Mg C ha-1 yr-1 

Predictor variable 
 

Parameter 

value 

Standard 

Error 

t-value p-value 2000-2015 change in 

gains (%) * 

(Intercept) 
 

 4.694 0.733  6.402 <0.001 - 

CO2 (ppm) 
 

 0.005 0.001  3.186  0.001  5.78% | 5.90% 

MAT (°C) 
 

-0.143 0.021 -6.928 <0.001 -1.24% | -1.89% 

MCWD (mm x1000) 
 

-1.164 0.207 -5.628 <0.001 -1.42% | -2.08% 

Carbon losses, Mg C ha-1 yr-1 † 

Predictor variable 
 

Parameter 

value 

Standard 

Error 

t-value p-value 2000-2015 change in 

losses (%) * 

(Intercept) 
 

 1.033 1.855  0.557 0.578 - 

CO2 (ppm) 
 

 0.004 0.004  0.949 0.343  6.60% | 5.83% 

MAT (°C) 
 

-0.015 0.044 -0.343 0.732 -0.18% | -0.24% 

MCWD (mm x1000)   -0.515 0.499 -1.032 0.302 -0.86% | -1.09% 

* The 2000-2015 change in gains/losses for each predictor variable was estimated allowing only the focal 867 

predictor to vary; this change was then expressed as a percentage of the annual gains/losses in the year 2000 868 

allowing all predictors to vary. 869 

† carbon loss values were normalized via power-law transformation, λ= 0.361. 870 

  871 
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Extended Data Table 2. Forest area estimates used to calculate total continental forest sink. 872 

Period   intact forest area (Mha) * 

  
 

Africa Amazon Southeast Asia 

1980 
 

671.5 958.3 233.6 

1990  600.2 885.2 190.6 

2000 
 

531.8 817.2 136.9 

2010 
 

477.8 756.3 118.4 

2015 
 

450.5 726.7 101.5 

2020  425.5 698.5 90.1 

2030 
 

379.7 645.4 71.0 

2040   338.8 596.4 56.0 

 * Intact forest area for 1990, 2000 and 2010 is published in ref.1 (i.e. the total forest area minus forest regrowth); 873 

to estimate intact forest area for 1980, 2015, 2020, 2030 and 2040 we fitted exponential models for each 874 

continent using the 1990-2010 data.  875 
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 876 

 877 

 878 

 879 

 880 

 881 

 882 

 883 

 884 

 885 

  886 

Extended Data Figure 1. Map showing the locations of the 244 plots included in this study. Dark 887 

green represents all lowland closed-canopy forests, submontane forests and forest-agricutlure mosaics; 888 

light green shows swamp forests and mangroves65. The three-letter codes refer to plot-cluster names 889 

(see Supplementary Table 1 for the full list of plots). Clusters <50 km apart are shown as one dot for 890 

display only. Blue dot size corresponds to sampling effort in terms of hectares monitored. 891 

 892 

  893 
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 894 

 895 

 896 

 897 

 898 

 899 

 900 

 901 

 902 

 903 

 904 

 905 

 906 

 907 

Extended Data Figure 2. Distribution of values of the long-term above-ground carbon dynamics 908 

of 244 African intact tropical forest inventory plots. Points in the scatterplots indicate the mid-909 

census interval date, with horizontal bars connecting the start and end date for each census interval for 910 

the net carbon sink (a), carbon gains (from woody productivity) (b), and carbon losses (from mortality) 911 

(c). Examples of time series for three individual plots are shown in purple, yellow and green. 912 

Associated histograms show the distribution of the plot-level net carbon sink (d) (with a three-913 

parameter Weibull probability density distribution fitted in blue, showing the sink is significantly 914 

larger than zero; one-tail t-test: p<0.001), carbon gains (e), and carbon losses (f).  915 

  916 
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 917 

 918 

 919 

 920 

 921 

Extended Data Figure 3. Akaike’s Information Criterion (AIC) from correlations between the 922 

carbon gain in tropical forest inventory plots and changes in either atmospheric CO2, 923 

temperature (as MAT) or drought (as MCWD) each calculated over ever-longer prior intervals. 924 

Panels show AIC from linear mixed effects models of carbon gains and, atmospheric CO2 (CO2-925 

change) (a), Mean Annual Temperature (MAT-change) (b), and Maximum Climatological Water 926 

Deficit (MCWD-change, n=565 plots) (c). For CO2 the AIC minimum was observed when predicting 927 

the carbon gain from the change in CO2 calculated over a 56 year long prior interval length. We use 928 

this length of time to calculate our CO2-change parameter. Such a value is expected a priori because 929 

forest stands will respond most strongly to CO2 when most individuals have grown under the new 930 

rapidly changing conditon, which should be at its maximum at a time approximately equivalent to the 931 

carbon residence time of a forest stand66,67 (a mean of 62 years in this dataset). For MAT the AIC 932 

minimum was 5 years, which we use as the prior interval to calculate our MAT-change parameter. 933 

This length is consistent with experiments showing temperature acclimation of leaf-level and plant-934 

level photosynthetic and respiration processes over half-decadal timescales29,68. For MCWD the AIC 935 

minimum is not obvious, while the slope of the correlation, shown in panel (d), has no overall trend 936 

and oscillates between positive or negative values, meaning there is no obvious relationship between 937 

carbon gains and the change in MCWD over intervals longer than 1 year; thus MCWD-change is not 938 

included in our models. This result is expected, because once a drought ends, its impact on tree growth 939 

fades rapidly12,69, hence lagged impacts of past droughts are not expected. 940 

 941 
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 942 

 943 

 944 

 945 

 946 

 947 

 948 

 949 

 950 

 951 

 952 

 953 

Extended Data Figure 4. Potential forest-dynamics-related drivers of carbon gains and losses in 954 

structurally intact old-growth African and Amazonian tropical forests. The aboveground carbon 955 

gains, from woody productivity (a-b), and aboveground carbon losses, from mortality (c-d), are plotted 956 

against the carbon residence time (CRT), and wood density (WD), for African (blue) and Amazonian 957 

(brown) inventory plots. Linear mixed effect models were performed with census intervals (n=1566) 958 

nested within plots (n=565) to avoid pseudo-replication, using an empirically derived weighting based 959 

on interval length and plot area (see methods). Significant regression lines for the complete dataset are 960 

shown as a solid line; non-significant regressions as a dashed line. Each dot represents a time-weighted 961 

average plot-level value; transparency of the inner part of the dot represents total monitoring length, 962 

with empty circles corresponding to plots monitored for ≤ 5 years and solid dots for plots monitored 963 

for >20 years. Carbon loss data are presented untransformed for clarity; linear mixed effects models 964 

on transformed data to fit normality assumptions do not change the results. For the carbon gains and 965 

losses models CRT is calculated differently: see methods.  966 
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 967 

 968 

 969 

 970 

 971 

 972 

 973 

 974 

 975 

 976 

 977 

Extended Data Figure 5. Trends in predictor variables used to estimate long-term trends in 978 

above-ground carbon gains, carbon losses and the resulting net carbon sink in African and 979 

Amazonian tropical forest plot networks. Solid lines, blue for Africa (a-f), brown for Amazonia (g-980 

l), are the mean annual value for all plot locations on each continent, from published datasets (CO2-981 

change, MAT, MAT-change, MCWD), or estimated from the plot data (WD, CRT). Dotted lines are 982 

future values estimated from linear trends on the 1983-2014 data (slope and p-value reported in each 983 

panel). Trends for environmental variables (CO2-change, MAT, MAT-change, MCWD) are from 984 

simple linear models using the mean annual record. Trends for CRT and WD are from linear mixed 985 

effects models using the plot data, i.e. regressing the mid-point of each census interval against the 986 

value of the predictor variable for that census interval, using plot identity as a random effect, and 987 

weighting observations by plot size and census interval length (as in Figure 1). Dashed lines in panels 988 

e-f and k-l represent the time window where <75% of plots were monitored, hence contributing less 989 

to the linear mixed effects model. 990 
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 992 

 993 

 994 

 995 

 996 

 997 

 998 

 999 

 1000 

 1001 

Extended Data Figure 6. The change in carbon losses versus carbon residence time (CRT) of 1002 

plots in Africa and Amazonia. The data include only plots monitored for >20 years (i.e. roughly one-1003 

third of the mean CRT of the pooled African and Amazon dataset; n = 116). Breakpoint regression 1004 

was used to assess the CRT length below which forest carbon losses begin to increase. Plots with CRT 1005 

<77 years show a long-term increase in carbon losses. Blue dots are African plots, brown dots are 1006 

Amazonian plots.  1007 
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 1009 

 1010 

 1011 

 1012 

 1013 

 1014 

 1015 

 1016 

 1017 

 1018 

 1019 

 1020 

 1021 

 1022 

 1023 

Extended Data Figure 7. Trends in African forest net aboveground live biomass carbon sink, 1024 

carbon gains and carbon losses, calculated for the last 15 years of the twentieth century (left 1025 

panels a-c) and the first 15 years of the twenty-first century (right panels d-f). Plots were selected 1026 

from the full dataset if their census intervals covered at least 50% of the respective time windows 1027 

(n=56 plots for 1985-2000, and n=134 plots for 2000-2015, respectively). Solid lines show mean 1028 

values calculated as for Figure 1; shading corresponds to the 95% CI. Dashed lines, slopes and p-1029 

values are from linear mixed effects models.  1030 

 1031 
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 1035 

 1036 

 1037 

 1038 

 1039 

 1040 

 1041 

 1042 

 1043 

 1044 

 1045 

 1046 

Extended Data Figure 8. Twenty-first century trends in aboveground biomass carbon losses 1047 

from African tropical forest inventory plots with either long (left panels) or short (right panels) 1048 

carbon residence time. Upper panels include all plots, i.e. as in Figure 1, but split into a long-CRT 1049 

group (a), and a short-CRT group (b), each containing half the 244 plots. Lower panels restrict plots 1050 

to those spanning >50% of the time window, i.e. as in Extended Data Figure 7, but split into a long-1051 

CRT group (c), and a short-CRT group (d), each containing half the 134 plots. Solid lines indicate 1052 

mean values, shading the 95% CI. Dashed lines, slopes and p-values are from linear mixed-effects 1053 

models. Carbon losses increase more through time in the short-CRT than the long-CRT group of plots, 1054 

in both datasets, although this increase is not statistically significant.  1055 
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